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Miesto vypracovania: ÚRK
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problematike návrhu regulátora s plánovaným zosilneńım
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Abstract
(English)

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

Faculty of Electrical Engineering and Information Technology

Institute of Robotics and Cybernetics

Doctor of Philosophy

Gain-Scheduled Controller Design

by Adrian Ilka, Ing.

This thesis is devoted to controller synthesis, i.e. finding a systematic proced-

ure to determine the optimal (sub-optimal) controller parameters which guarantee the

closed-loop stability and guaranteed cost for uncertain nonlinear systems with consid-

ering input/output constraints, all this without on-line optimization. The controller in

this thesis is given in a feedback structure that is, the controller has information about

the system and uses this information to influence the system. In this thesis the linear

parameter-varying based gain scheduling is investigated. The nonlinear system is trans-

formed to a linear parameter-varying system, which is used for controller design, i.e.

a gain-scheduled controller design with consideration of the objectives on the system.

The gain-scheduled controller synthesis in this thesis is based on the Lyapunov theory

of stability as well as on the Bellman-Lyapunov function. Several forms of parameter

dependent/quadratic Lyapunov functions are presented and tested. To achieve perform-

ance quality, a quadratic cost function and its modifications known from LQ theory are

used. In this thesis one can also find an application of gain scheduling in switched and in

model predictive control with consideration of input/output constraints. The main res-

ults for controller synthesis are in the form of bilinear matrix inequalities (BMI) and/or

linear matrix inequalities (LMI). For controller synthesis one can use a free and open

source BMI solver PenLab or LMI solvers LMILab or SeDuMi. The synthesis can be

done in a computationally tractable and systematic way, therefore the linear parameter-

varying based gain scheduling approach presented in this thesis is a worthy competitor

to other controller synthesis methods for nonlinear systems.

Keywords: Gain-scheduled control; Lyapunov theory of stability; Guaranteed cost con-

trol; Bellman-Lyapunov function; LPV system; Robust control; Input/output constraints
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Abstrakt
(Slovak)

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE

Fakulta elektrotechniky a informatiky

Ústav robotiky a kybernetiky

Doctor of Philosophy

Riadenie systémov metódou ”gain scheduling”

Adrian Ilka, Ing.

Táto práca sa venuje problematike návrhu regulátora, tj. nájst’ systematický

postup na návrh optimálnych (suboptimálnych) parametrov regulátora, ktoré garantujú

stabilitu a kvalitu v uzavretej slučke, pri obmedzeńı vstupno-výstupných hodnôt

systémov pre nelineárne systémy s neurčitost’ami, a to bez on-line optimalizácie. Uvedený

regulátor má spätno-väzobnú riadiacu štruktúru, čo znamená, že disponuje informáciami

o danom systéme, ktoré využ́ıva k jeho ovplyvneniu. Táto práca sa podrobneǰsie zaoberá

s riadeńım s plánovaným zosilneńım, a to na báze parametricky závislých lineárnych

systémov. Nelineárny systém je pretransformovaný na parametricky závislý lineárny

systém, čo sa následne využ́ıva na návrh regulátora, tj. regulátora s plánovaným

zosilneńım, s ohl’adom na požiadavky daného systému. Syntéza regulátora s plánovaným

zosilneńım sa uskutočńı na báze Lyapunovej teórie stability s použit́ım Bellman-

Lyapunovej funkcie, v rámci čoho sú prezentované a testované rôzne typy kvadratickej

a parametricky závislej Lyapunovej funkcie. Pre dosiahnutie požadovanej kvality

sa použ́ıva kvadratická účelová funkcia známa z LQ riadenia, s rôznymi modifikáciami.

V tejto práci nájdeme aj aplikáciu riadenia s plánovaným zosilneńım v oblasti takzvaného

preṕınacieho riadenia (switched control), ako aj v rámci predikt́ıvneho riadenia (model

predictive control). Hlavné výsledky pre syntézu regulátorov sú v tvare bilineárnych

maticových nerovńıc (BMI) a/alebo linearných maticových nerovńıc (LMI). Na návrh

regulátorov môžeme použ́ıvat’ bezplatný a
”
open source“ BMI solver PenLab alebo LMI

solvre LMILab a SeDuMi. Uvedené skutočnosti umožnia vykonat’ syntézu jednoduchým

a systematickým spôsobom. Riadenie s plánovaným zosilneńım na báze parametricky

závislých lineárnych systémov prezentované v tejto práci je vhodným konkurentom

vo vzt’ahu k iným metódam syntézy regulátorov pre nelineárne systémy.

Kl’́učové slová: Riadenie s plánovaným zosilneńım; Lyapunová teória stability; Riadenie

s garantovanou kvalitou; Bellman-Lyapunová funkcia; LPV systémy; Robustné riadenie;

Vstupné/výstupné obmedzenia

http://www.stuba.sk/
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Introduction

This thesis is devoted to controller synthesis, i.e. finding a systematic procedure to

determine the optimal (sub-optimal) controller parameters which guarantee the closed-

loop stability and guaranteed cost for uncertain nonlinear systems with considering

input/output constraints. In consideration of the objectives stated for the system such

as tracking a reference signal or keeping the plant at a desired working point (operation

point) and based on the knowledge of the system (plant), the controller takes decisions.

In this thesis, the controller is given in a feedback structure, which means that the

controller has information about the system and uses it to influence the system. A system

with a feedback controller is said to be a closed-loop system.

To design a controller which satisfies the objectives, we need an adequately accurate

model of the physical system. Nevertheless, real plants are hard to describe exactly.

Alternatively, the designed controller must handle cases when the state of the real plant

differs from what is observed by the model. A controller that is able to handle model

uncertainties and/or disturbances is said to be robust, and the theory dealing with these

issues is said to be robust control.

The robust control theory is well established for linear systems but almost all real pro-

cesses are more or less nonlinear. If the plant operating region is small, one can use

robust control approaches to design a linear robust controller, where the nonlinearities

are treated as model uncertainties. However, for real nonlinear processes, where the

operating region is large, the above mentioned controller synthesis may be inapplicable

because the linear robust controller may not be able to meet the performance specific-

ations. For this reason, the controller design for nonlinear systems is nowadays a very

determinative and important field of research.

Gain scheduling is one of the most commonly used controller design approaches for

nonlinear systems and has a wide range of use in industrial applications. Many of the

early articles were associated with flight control and aerospace. Then, gradually, this

approach has been used almost everywhere in control engineering, which was greatly

advanced with the introduction of LPV systems.
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1. Introduction

Linear parameter-varying systems are time-varying plants whose state space matrices are

fixed functions of some vector of varying parameters θ(t). These were introduced first by

Jeff S. Shamma in 1988 to model gain scheduling. Today the LPV paradigm has become

a standard formalism in the area of systems and controls with lot of contributions and

articles devoted to analysis, controller design and system identification of these models.

This thesis deals with linear parameter-varying based gain scheduling, which means that

the nonlinear system is transformed to a linear parameter-varying system, which is used

to design a controller, i.e. a gain-scheduled controller. The problem formulation is close

to the linear system counterpart, therefore using LPV models for controller design has

potential computational advantages over other controller synthesis methods for nonlinear

systems. Not to mention that the LPV based gain scheduling approaches comes with

a theoretical validity because the closed-loop system can meet certain specifications.

Nonetheless, following the literature it is ascertainable that there are still many unsolved

problems. This thesis is devoted to some of these problems.

1.1 Goals & Objectives

As already mentioned, there are many unsolved problems. Therefore, it is necessary

to find new and novel controller design approaches. The main goal of this thesis is to

find a controller design approach for uncertain nonlinear systems, which guarantees the

closed-loop stability and the optimal controller output with considering input/output

constraints, all this without on-line optimization and need of high-performance industrial

computers. In order to achieve the above mentioned goal, we have set the following

objectives:

• To suggest a gain-scheduled PID controller design approach with guaranteed cost

in continuous and discrete time state space using BMI

• To suggest a robust gain-scheduled PID controller design approach with guaranteed

cost and parameter dependent quadratic stability in state space using BMI

• To suggest a variable weighting gain-scheduled approach

• To convert some BMI controller design approaches to LMI

• To suggest a switched and model predictive gain-scheduled method

• To suggest a gain-scheduled controller design approach with input/output con-

straints

• To apply methods to relevant processes
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1.2. Outline

1.2 Outline

The sequel of this thesis is organized as follows. In the preliminary chapter (Chapter

2), one can find a literature review with a brief overview of linear parameter-varying

systems and gain scheduling. Chapter 3 presents an overview of research results with

a brief summary of included papers. After this, one can find 9 papers, which cover

the main research results obtained within the last 2.5 years (Chapter 4-12). Finally, in

Chapter 13, following the papers, some concluding remarks and suggestions for future

research are given.
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2

Preliminary chapter

In this chapter preliminaries of linear parameter-varying systems as well as gain schedul-

ing are introduced. This chapter is intended to highlight the properties and give a short

background to the tools used in the appended papers.

2.1 Linear parameter-varying systems

Linear parameter-varying systems are time-varying plants whose state space matrices

are fixed functions of some vector of varying parameters θ(t). It was introduced first by

Jeff S. Shamma in 1988 [1] to model gain scheduling. ”Today LPV paradigm has become

a standard formalism in systems and controls with lot of researches and articles devoted

to analysis, controller design and system identification of these models”, as Shamma

wrote in [2]. This section deals with LPV models and presents analytical approaches for

LPV systems.

2.1.1 Introduction to LPV systems

Linear parameter-varying systems are time-varying plants whose state space matrices

are fixed functions of some vector of varying parameters θ(t). Linear parameter-varying

(LPV) systems have the following interpretations:

– they can be viewed as linear time invariant (LTI) plants subject to time-varying

known parameters θ(t) ∈ 〈θ θ〉,

– they can be models of linear time-varying plants,

– they can be LTI plant models resulting from linearization of the nonlinear plants

along trajectories of the parameter θ(t) ∈ 〈θ θ〉 which can be measured.
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2. Preliminary chapter

For the first and third class of systems, parameter θ can be exploited for the control

strategy to increase the performance of closed-loop systems. Hence, in this thesis the

following LPV system will be used:

ẋ = A(θ(t))x+B(θ(t))u

y = Cx
(2.1)

where for the affine case

A(θ(t)) = A0 +A1θ1(t) + . . .+Apθp(t)

B(θ(t)) = B0 +B1θ1(t) + . . .+Bpθp(t)

and x ∈ Rn is the state, u ∈ Rm is a control input, y ∈ Rl is the measurement output

vector, A0, B0, Ai, Bi, i = 1, 2 . . . , p, C are constant matrices of appropriate dimension,

θ(t) ∈ 〈θ θ〉 ∈ Ω and θ̇(t) ∈ 〈θ̇ θ̇〉 ∈ Ωt are vectors of time-varying plant parameters

which belong to the known boundaries.

The LPV paradigm was introduced by Jeff. S. Shamma in his Ph.D. thesis [1] for the

analysis of gain-scheduled controller design. The authors in early works (see [1, 3–8] and

surveys [9, 10]) in gain scheduling the LPV system framework called as the golden mean

between linear and nonlinear dynamics, because ”the LPV system is an indexed collection

of linear systems, in which the indexing parameter is exogenous, i.e., independent of the

state.”(wrote J. S. Shamma in his Ph.D. thesis [1]). In gain scheduling, this parameter

is often a function of the state, and hence endogenous

ẋ = A(z)x+B(z)u

y = C(z)x

z = h(x)

(2.2)

2.1.1.1 Application of the LPV systems

Since the first publication devoted to LPV systems, the LPV paradigm has been used

in several fields in control engineering including the modeling and control design. Tra-

ditionally the gain scheduling was the primary design approach for flight control and

consequently many of the first articles and papers which applied and improved the LPV

framework were associated with flight control. Afterwards continuously many papers

and articles have appeared which are using LPV paradigm in several application areas

such as:

• Flight control and missile autopilots [11–17]

• Aeroelasticity [18–21]

• Magnetic bearings [22–25]
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2.1. Linear parameter-varying systems

• Automotive bearings [26–28]

• Energy and power systems [29–34]

• Turbofan engines [35–38]

• Microgravity [39–41]

• Diabetes control [42–44]

• Anesthesia delivery [45]

• IC manufacturing [46]

• etc.

Due to the success of LPV paradigm in 2012 for the twentieth anniversary of the inven-

tion of LPV paradigm a gift edition book was published by Javad Mohammadpour and

Carsten W. Scherer Editors at Springer [2] which is fully devoted to LPV systems.

2.1.2 Stability analysis

The basic stability analysis question for LPV systems is how to ensure the stability of

the closed-loop nonlinear system and of the closed-loop family of linear systems, when

the scheduled parameters are changed. The following section is devoted to this basic

stability question and shows the basic theoretical approaches to investigate the stability

for

1. slow time parameter variations,

2. arbitrarily fast time parameter variations.

2.1.2.1 Time variations and instability

It is a well-known problem from linear system analysis that time variations can induce

instability. For example, consider a stable LTV system (2.3), so the eigenvalues of A(t)

are in the left half plane for all t 6= 0. The question is for which solution the state x(t)

grows exponentially.

ẋ = A(t)x (2.3)

Fig. 2.1 shows the main insight into this problem using the state trajectories of the

LPV system (2.4) with parameter θ which is periodically switching between two values

θ(t) ∈ 〈ωa, ωb〉. In this figure the red line indicates the unstable switching trajectory

and the dashed lines indicate individual oscillatory trajectories.

ẋ =

(
0 1

−θ2 0

)
x (2.4)
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2. Preliminary chapter

For a fixed value of θ the LTI system is marginally stable. Instability occurs by an

alignment of phases of increasing magnitude.

x2

x1

Figure 2.1: Instability induced by switching dynamics

Concerning to induced instability non-minimum phasedness is induced. The right-half-

plane zeros in the transfer function of an LTI system can cause radical limitations in

achievable performance. While time-varying systems do not have right-half-plane zeros,

there are similar notions and similar resulting limits of performance. Shamma [2] defines

a non-minimum phased property for nonlinear time-varying systems, where an unboun-

ded input produces a bounded output. This property produces fundamental limitations

on the closed-loop disturbance rejection. As Shmamma presented in [1], parameter time

variation can induce instability, they can also induce such non-minimum phased beha-

viours. Summarizing all of this, an LPV system can be the minimum phase for constant

parameter values, but non-minimum phase under time variation and thereby have fun-

damental limits on achievable performance that are not apparent from the constant

parameter analysis.

2.1.2.2 Slow time parameter variations

In [2], Shamma has stated the following: ”Stability for constant parameter-varying para-

meter trajectories implies stability for slowly time-varying parameter trajectories”. This

section presents a collection of results which motivated Shamma to formalize the previ-

ous statement.

Let Θ denote the set of admissible parameter values whereas Q denotes admissible

trajectories for θ(·), the related Θ denotes admissible values of θ(t). Let assume that for

any θ0, the LTI system is exponentially stable.

According to Shamma, in particular, let m ≥ 1 and λ > 0 be such that for any θ0 ∈ Θ,

solution of (2.3) satisfy

|x(t)| ≤ me−λt |x(0)|

where m is referred to as a peaking constant which reflects that the state may increase in

magnitude before decaying exponentially. Fig. 2.2 shows the main principle of stability

under slow time variations, where the red line indicates the actual state magnitude, the

8



2.1. Linear parameter-varying systems

blue line indicates a succession of upper bounds implied by me−λt and the green line is

an exponentially decaying overall upper bound. For more details see [47].

0 5 10 15 20 25 30 35 40 45 50
0
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e

Figure 2.2: Stability and peaking

The statement ”Slow time-varying” for the continuous case can be characterized as

follows:

Assume Lipschitz continuity of A(·) for some LA > 0

‖A(θ)−A(θ′)‖ ≤ LA|θ − θ′| (2.5)

for all θ, θ′ ∈ θc. The expression |x| denotes the Euclidean norm of x ∈ Rn and ‖A‖
denotes the induced matrix norm. Than

• Persistently slow:

|θ̇| < ε

• Slow on average:

inf
T>0

sup
t0≥0

1

T

∫ t0+T

t0

|θ̇|dt < ε

over any interval [t0, t0 + T ] is small.

Theorem 2.1. For all of the above settings the LPV system (2.1) is exponentially stable

for a sufficiently small ε > 0.

Stability results for properly slow time variations, trace back to classical results in or-

dinary differential equations [48]. Nevertheless, a suitable analysis can derive revealing

explicit bounds in the above case

• Persistently slow [1] and slow on average [49]:

ε <
λ2

4LAm log(m)
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2. Preliminary chapter

Shamma stated an interesting implication from the above bounds, time variations can

be arbitrarily fast, when m = 1. In terms of the previous discussion, m = 1 implies that

trajectories in the constant parameter case have no peaking, and therefore cannot align

to produce instability.

2.1.2.3 Arbitrary time parameter variations

This section deals with the stability question from the other extreme, when time vari-

ations are arbitrarily fast. For this discussion consider an LPV plant in the form

ẋ(t) = A(θ(t))x(t) (2.6)

Shamma and others [50–52] concluded that

• Determining whether solutions of (2.6) are bounded is undecidable.

• Determining whether (2.6) is asymptotically stable is NP-hard 1

• Consequentially, deriving efficient algorithms for assessing stability will remain to

be elusive.

Shamma according that a consequence of the complexity results is, that one must settle

for non-definitive methods or inefficient algorithms to access stability.

Theorem 2.2. The LPV system (2.1) is exponentially stable for all θ ∈ Ω if there exist

symmetric, positive defined matrix P such that the following inequality holds

AT (θ)P + PA(θ) < 0 (2.7)

The proof is, that xTPx is a Lyapunov function for the LPV system, which in this

case is the only Lyapunov function for all associated constant parameter LTI system.

The result is only a sufficient condition. Shamma in [2] introduced a simple example

from [53] which explains this problem. Consider a simple second-order system whose

dynamics matrix can switch between two matrices

ẋ ∈ {A1x, A2x} (2.8)

This can be viewed as an LPV plant with θ ∈ 〈−1, 1〉. In [53] the authors shows that

for

A1 =

(
−1 −1

1 −1

)
, A2 =

(
−1 −a
1/a −1

)
where 3+

√
8 < a < 10, the above system is stable for arbitrary switching, but no P exists

satisfying conditions (2.7). This is called by some authors [54–57] as the conservativeness

1NP-hard (Non-deterministic Polynomial-time hard), in computational complexity theory, is a class
of problems that are, informally, ”at least as hard as the hardest problems in NP”
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2.1. Linear parameter-varying systems

of the quadratic stability. Therefore a lot of people were looking for a solution on how to

reduce the conservatism. And this has resulted in certain special structures of suitable

Lyapunov functions [54–60].

Let denote

A(t, τ ; θ([τ, t])) (2.9)

as the state transition matrix for an LPV system, where the dependence on the parameter

trajectory is explicit (over the interval [τ, t]). Accordingly

x(t) = A(t, τ ; θ([τ, t]))x(τ) (2.10)

Assuming that an LPV plant is exponentially stable for all parameter trajectories, there

exist m and λ > 0 such that

‖A(t, τ ; θ([τ, t]))‖ ≤ me−λ(t−τ) (2.11)

Let T be such that me−λT < 1, and define the following Lyapunov function candidate

(e.g., [61])

V (x, t) =

∫ t+T

t
|A(τ, t; θ([t, τ ]))x|2dτ (2.12)

Fig. 2.3 illustrates the construction of this function. This function is the energy of the

solution over the interval [t, t + T ]. One can show that V (x(t), t) is decreasing along

solutions of the LPV system. In particular

V (x(t+ h), t+ h)− V (x(t), t) ≈ −h|x(t)|2 + h|x(t+ T )|2 < −
(

1−me−λT
)
|x|2 (2.13)

Neglecting issues of differentiability, the above construction suggests that

dV (x(t), t)

dt
< −c|x|2 (2.14)
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t t+T

Figure 2.3: Integral for Lyapunov function construction
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2. Preliminary chapter

The structure of this Lyapunov function can be rewritten as a quadratic function in x,

where the defining matrix is a function of the future parameter trajectory

V (x(t), t) = xT (t)P (θ([t, t+ T ]))x(t) (2.15)

We can reparametrize the function to be a function of past parameter trajectories

V (x(t), t) = xT (t)P̃ (θ([t− T, t]))x(t) (2.16)

The authors in [59] used a similar construction to derive the following theorem

Theorem 2.3. [59] An LPV system is exponentially stable for arbitrary time variations

if and only if there exists a trajectory dependent quadratic Lyapunov function of the form

V (x, t) = xTP (θ([t− T, t]))x (2.17)

In discrete time, authors [59] use this result to derive a numerical search for Lyapunov

functions. Regarding the previous discussion on complexity, this search may need to

admit progressively longer intervals of trajectory dependence.

It turns out that one can eliminate the dependence on the parameter trajectory alto-

gether. The intuition is as follows. From the Lyapunov function in Theorem 2.3, define

V̄ (x) = inf
θ([t−T,t])

xTP (θ([t− T, t]))x (2.18)

The new Lyapunov function is the former Lyapunov function evaluated at a worst case

trajectory [2]. Again, an informal analysis illustrates that this parameter-independent

Lyapunov function decreases along the solution of the LPV system for all parameter

trajectories. This motivates the existence in general of a pseudo-quadratic Lyapunov

function.

Authors Molchanov and Pyatnitskiy in [60] introduced the following theorem

Theorem 2.4. [60] An LPV system is exponentially stable for arbitrary time variations

if and only if there exists a Lyapunov function of the form

V (x) = xTP (x)x (2.19)

for some family of matrices P (·), with the property that P (αx) = αP (x) for α ≥ 0.

In book [2], papers [62, 63], survey [64] and monograph [65] we can find further discus-

sions which go on to characterize alternative piecewise linear structures for exponentially

stable LPV systems. Besides these we can find papers which investigate the stability of

an LPV systems using parameter-dependent quadratic stability [54, 56, 57, 66, 67]. The

main principle of parameter-dependent quadratic stability is that against the result with

quadratic stability we have one Lyapunov function for all vertices of θ. So the Lyapunov

function is parameter-dependent

V (θ(t)) = xT (t)P (θ(t))x(t) (2.20)
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2.2. Gain scheduling

where θ ∈ Ω and

P (θ) = P0 +

p∑
i=1

Piθi (2.21)

P. Gahinet, P. Apkarian and M. Chilali in [57] in this context introduced the following

theorem

Theorem 2.5. [57] The LPV system (2.1) for θ ∈ Ω and θ̇ ∈ Ωt is affinely quadratically

stable if and only if there exist p+ 1 symmetric matrices P0, P1, . . . , Pp such that

P (θ) = P0 +

p∑
i=1

Piθi > 0 (2.22)

and for the first derivative of Lyapunov function V (θ) = xTP (θ)x along the trajectory

of LPV system (2.1) it holds

dV (x, θ)

dt
= xT

(
A(θ)TP (θ) + P (θ)A(θ) +

dP (θ)

dt

)
x < 0 (2.23)

where
dP (θ)

dt
=

p∑
i=1

Piθ̇i ≤
p∑
i=1

Piρi

In this case we must have predefined the maximum rate of change of scheduled para-

meters θ̇i as ρi.

2.1.3 Summary

In this section (Linear parameter-varying system) the LPV systems were presented and

described and their stability analysis since its introduction (1988 by Jeff. S. Shamma

[1]) to the present (2015). The analysis and theorems stated herein are presented in

an informal manner. Technical details may (and should) be found in the associated

references.

2.2 Gain scheduling

The robust control theory is well established for linear systems but almost all real pro-

cesses are more or less nonlinear. If the plant operating region is small, one can use

the robust control approaches to design a linear robust controller where the nonlinear-

ities are treated as model uncertainties. However, for real nonlinear processes, where

the operating region is large, the above mentioned controller synthesis may be inap-

plicable. For this reason the controller design for nonlinear systems is nowadays a very

determinative and important field of research.
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Gain scheduling is one of the most common used controller design approaches for non-

linear systems and has a wide range of use in industrial applications. In this section

the main principles, several classical approaches and finally the linear parameter-varying

based version of gain scheduling are presented and investigated.

2.2.1 Introduction to gain scheduling

In literature a lot of term are meant under gain scheduling (GS). For example switching

or blending of gain values of controllers or models, switching or blending of complete

controllers or models or adapt (schedule) controller parameters or model parameters ac-

cording to different operating conditions. A common feature is the sense of decomposing

nonlinear design problems into linear or nonlinear sub-problems. The main difference

lies in the realization.

Consequently gain scheduling may be classified in different way

• According to decomposition

1. GS methods decomposing nonlinear design problems into linear sub-problems

2. GS methods decomposing nonlinear design problems into nonlinear (affine)

sub-problems

• According to signal processing

1. Continuous gain scheduling methods

2. Discrete gain scheduling methods

3. hybrid or switched gain scheduling methods

• According to main approaches

1. Classical (linearization based) gain scheduling

2. LFT based GS synthesis

3. LPV based GS synthesis

4. Fuzzy GS techniques

5. Other modern GS techniques

2.2.1.1 History of gain scheduling

The ferret in the history of gain scheduling appears in the 1960s but a similar simpler

technique was used in World War II toat control the rockets V2 (switching controllers

based on measured data). It is not surprising therefore that gain scheduling as a concept

or notion firstly appear in flight control and later in aerospace. Leith and Leithead in

their survey [9] and likewise also Rugh and Shamma in their survey paper [10] considered

the first appearance of GS from the 1960s. Rugh stated in his survey that ”Gain control”
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2.2. Gain scheduling

does appear in the 25th Anniversary Index (1956–1981) published in 1981 but only

one of the five listed papers is relevant to gain scheduling. Also Automatica lists gain

scheduling as a subject in its 1963–1995 cumulative index published in 1995. Of the

four citations given, only one dated earlier than 1990 [1]. It can be stated that increased

attention to gain scheduling appeared after introducing the LPV paradigm by Jeff.

S. Shamma (1988). This is partly understandable because LPV paradigm allowed to

describe nonlinear system as a family of linear systems and hence investigate the stability

of these systems. Fig. 2.4 shows the major dates with remarks in a time-line of gain

scheduling.

PresentPast

1960 1969 1981 1988

1991

1943

Fist gain-scheduling 

like controllers;

II. World War

First appear of notion gain-

scheduling; application in 

flight and aerospace

Quiet years;

only few publications 

devoted to gain-scheduling

"Gain control" 

does appear in

the 25th 

Anniversary 

Index

Jeff. S. Shamma 

introduced LPV 

systmes

Rugh and Shamma 

and also Leith and  

Leithead survay 

papers on gain-

scheduling;

Increased interest in 

gain-scheduling

Gain-scheduling is one 

of the most popular 

approaches to nonlinear 

control design

2010

Figure 2.4: The time-line of gain scheduling

2.2.1.2 Application of gain scheduling

As already noted, traditionally the gain scheduling was the primary design approach

to flight control and, consequently, many of the first articles and papers were associ-

ated with flight control [68–75] and aerospace [76–78]. Then gradually GS has been

used almost everywhere in control engineering which was greatly advanced with the

introduction of LPV systems.

The second big bang in the history of gain scheduling was the advent of fuzzy gain

scheduling. Today, every second paper that appears under gain scheduling is devoted

to fuzzy gain scheduling. Due to this wide range of gain-schedule approaches, gain

scheduling is now used in several fields in practice. For example in power systems the

gain scheduling enjoyed exceptional success in control of wind turbines [79–85]. But

beside all this, some papers are devoted to hydro turbines [86, 87], gas turbines [88],

power system stabilizers [89] and generators [90]. Many papers in gain scheduling are

devoted to magnetic bearings [91–96] but we can find some papers devoted to also to

microgravity [97], turbofan engine [98] and diabetes control [99].
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2.2.2 Classical gain scheduling

In the case of nonlinear dynamics an idea is widely used among control engineers to

linearize the plant around several operating points and to use linear control tools to

design a controller for each of these points. The actual controller is implemented using

the gain scheduling approach. Success of such an approach depends on establishing the

relationship between a nonlinear system and a family of linear ones. There are two main

problems:

1. Stability results: stability of the closed-loop nonlinear system and of the closed-

loop family of linear systems, when scheduled parameters are changes.

2. Approximation results which provide a direct relationship between the solution of

closed-loop nonlinear systems and the solution of associated linear systems [10],

[9]

Rugh and Shamma in [10] comprise four main steps in classical gain scheduling

1. A family of LTI approximations are obtained from nonlinear plant at constant

operating points (equilibria), parametrized by exogenous signal θ (scheduled para-

meter) which is computed using linearization based scheduling. The linearization

has to correspond to zero error. Other syntheses to derive a parameter-dependent

model are

• Off-equilibrium or velocity based linearization [9, 100–102] - when zero equi-

librium points or working conditions are not present

• Quasi LPV approach [9, 10, 102], in which the plant dynamics are rewrit-

ten to distinguish nonlinearities as time-varying parameters that are used as

scheduling variables.

• Direct LPV modelling, based on a linear plant incorporating time-varying

parameters [1, 75, 102] - when no nonlinear plant is involved. This also

includes black-box or data-based modelling methods

2. A set of LTI controllers are designed using linear control tools for previously derived

set of local LTI models to achieve specified performance and stability at each

operating point. The resulting set of controllers is also parametrized by scheduled

parameter θ. Although the scheduled parameter is time-varying, the classical gain

scheduling methods are based on fixed or frozen scheduling parameter values. To

enable subsequent scheduling, interpolation of controller parameters, the set of LTI

controllers almost requires a fixed structure of the controller design. Exceptions

are

• in the case direct derivation of a Linear Parameter-Varying (LPV) control-

ler for a corresponding LPV plant model is possible, subsequent scheduling,

interpolation becomes superfluous.

16



2.2. Gain scheduling

• when discrete or hybrid scheduling instead of continuous scheduling is deman-

ded, the set of controller designs not necessarily need to be fixed-structured.

3. Implementation of the family of LTI controllers such that the controller coefficients

are scheduled according to the current value of the scheduling variable, e.g. by

controller gain interpolation or scheduling. At this point, θ = θ(t) is implemented.

At each operating point, the scheduled controller has to be linearized to the corres-

ponding linear controller design as well as provide a constant control value yielding

zero error at these points. As mentioned in Step 2, in the case of direct scheduling,

this step becomes superfluous. Furthermore, in the case of discrete scheduling, the

implementation of the LTI controllers involves the design of a scheduled selection

procedure that is applied to the set of LTI controllers, rather than the design of

a family of scheduled controllers. The presence of hidden coupling terms is an

important aspect which yields various additional requirements to the scheduling

procedure.

4. Typically, local performance assessment can be performed analytically, whereas

assessment of global performance and robustness has to be established by extensive

simulations. Non-local performance of the gain-scheduled controller is evaluated

and checked by simulations.

2.2.3 LFT and LPV based gain scheduling

The LPV and LFT syntheses are based on LPV and LFT plant representations respect-

ively (Naus [102]). Both methods yield direct synthesis of a controller utilizing (L2

or H∞) norm based methods, with guarantees the robustness, performance and nom-

inal stability of the overall gain-scheduled design [7, 57, 66, 102–104]. LPV and LFT

syntheses essentially involve only two main steps.

1. The first step corresponds to the classical approach. A family of LTI approxima-

tions of a nonlinear plant at constant operating points (equilibria), parameterized

by constant values of convenient plant variables or exogenous signals θ are com-

puted. Subsequent implementation of the controller requires θ = θ(t) to be a

measurable variable. Besides the already mentioned methods, which all arrive at

Linear Parameter-Varying (LPV) models, in specific cases a LFT description is

possible. The LFT description serves as a basis for subsequent LFT controller

synthesis.

2. LPV and LFT control synthesis directly yield a gain-scheduled controller. Stability

and performance specifications can be guaranteed a priori as the time-varying

parameter θ(t) instead of its corresponding frozen value θ is addressed in the

design process. In [102] one can find only continuous-time gain scheduling but

the author Sato in 2011 [105] introduced discrete-time version of LPV based gain

scheduling where stability investigated with both H2 and H∞.
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2.2.3.1 LPV gain scheduling

The main advantages of the LPV control synthesis are as follows (Naus [102])

• There exists a solid theoretical foundation guaranteeing a priori stability and per-

formance for all θ(t) given a corresponding range and rate of variation of θ(t)

• The corresponding controller design is global with respect to the parametrized

operating envelope Ω, Ωt, whereas classical gain scheduling techniques focus on

local system properties.

• A controller is synthesized directly, rather than its construction from a family of

local linear controllers.

The main disadvantages are

• with respect to classical gain scheduling techniques, the controller synthesis is much

more involved, which results in focusing on appropriate problem formulation rather

than the actual controller design

• generally, conservatism has to be introduced to arrive at a feasible and convex

problem

• with respect to classical gain scheduling, allowing for arbitrary linear controller

design techniques, a predefined controller design synthesis has to be adopted.

As the latter point already indicates, LPV syntheses constitutes a specific performance

evaluation framework, whereas classical gain scheduling provides an open framework.

Typically, LPV syntheses employ the induced L2-norm as a performance measure, which

is directly related to linear H∞ techniques. As a result, an LPV control synthesis applied

to a time-invariant system is equivalent to a standard H∞ approach. In general, LPV

control syntheses can be categorized into

1. Lyapunov-based approach (LPV-based techniques)

2. techniques exploiting the specific structure of systems with LFT parameter de-

pendence, utilizing a small-gain approach, which are also determined as LFT ap-

proaches

3. a combination of the two preceding points, which Naus referred as ‘mixed’ LPV-

LFT approaches
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2.2. Gain scheduling

2.2.3.2 LFT gain scheduling

Exploiting LFT parameter-dependency of LPV systems enables application of a general-

ized H∞ control synthesis using the optimally scaled small-gain theorem. The parameter

variations are temporarily regarded as unknown perturbations [106]. Multipliers or scal-

ings describing the nature of the unknown, time-varying parameter θ(t) are introduced

to decrease conservatism with respect to LPV methods using a constant, common quad-

ratic Lyapunov function only.

An LFT model is a special case of a LPV model, which is transformed using an upper

LFT to M − ∆ structure, where M is a constant and known part, and ∆(θ(t)) is the

time-varying and unknown part. To enable an LFT representation, the system should

have a rational dependence on the parameter θ and no poles in zero. Transformation

of the LPV controller is similar using lower LFT, where K is the constant and known

part and ∆K(θ(t)) is the unknown part, where ∆K(θ(t)) represents a possibly nonlinear

controller scheduling function (see Fig. 2.5). The closed-loop interconnection of the

resulting LFTs is transformed, again using a lower LFT

T = FL (FU (M,∆(θ(t))) FL(K,∆K(θ(t)))) (2.24)

The closed-loop system matrix is defined as follows ζ̇(t)

zu(t)

z(t)

 =

 A Bu Bp
Cu Du Dup
Cp Dpu Dp


 ζ(t)

wu(t)

w(t)

 (2.25)

where w(t) → z(t) is the performance channel and zu(t) = ∆wu(t). The closed-loop

system has repeated linear fractional parameter dependence.

∆

∆K

M

K

vr

wz

uy

vKrK

Figure 2.5: LFT M −∆ structure

Analogous to the previously presented LPV controller synthesis, the scaled small-gain

control synthesis is based on the robust performance analysis of the closed-loop system.

Consider the closed-loop LFT interconnection system which is represented by (2.24),
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(2.25). The corresponding analysis involves three main conditions regarding the closed-

loop model T , comprising [107]

• well-posedness, i.e. for all initial conditions corresponding to the augmented sys-

tem M and all inputs w(t) to the system, the system should have a unique solution.

• exponential stability of the closed-loop system, which is analyzed via the small-

gain theory, which states that a closed-loop system is stable provided that the

loop-gain is less than unity

• performance; (quadratic performance or L2-performance or . . .)

Combining all three conditions we obtain a set of LMIs, which is directly derived from

the general LPV synthesis constraints [108].

The main advantages of the LFT approach are the possibility to use the optimally

scaled small-gain theorem, which is well-established in literature, and the possibility to

arrive at a finite dimensional set of LMIs using multipliers. However, the general full-

block multiplier approach is complex, whereas relaxations on the multipliers introduce

(much) conservatism. Furthermore, the use of a constant, common quadratic Lyapunov

function, implying that infinitely fast parameter variations are accounted for, introduces

conservatism, especially in the case of large parameter variations. Finally, the controller

inherits the LFT parameter dependency, which might be conservative, and possible

realness of the parameter θ(t) is not exploited, introducing conservatism as well.

2.2.4 Fuzzy gain scheduling

Fuzzy gain scheduling should overcome the disadvantage of classical gain scheduling

regarding the restriction of stability and performance analysis to local rather than global

closed-loop behaviour [70, 88, 96, 102]. The corresponding fuzzy modelling considers the

transient dynamics of the original nonlinear model instead of local linearizations only.

Fuzzy gain scheduling techniques may involve classical gain scheduling alike as well as

LPV techniques. According to Naus [102], focusing on the former one, four main steps

have to be considered.

1. Analogous to classical gain scheduling, sets of local LTI models and corresponding

LTI controllers have to be designed. Focus lies on the regions of the envelope

of operating conditions for which these controllers assure stability and desired

performance of the resulting (local) closed-loop systems.

2. To arrive at a fuzzy model, so-called weighting or scaling functions are designed,

corresponding to the before mentioned regions. Utilizing these weighting functions,

the local models are blended. Specifying a specific approximation accuracy of

the fuzzy model with respect to the original nonlinear model, yields the required

number of local models.
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3. The set of local controllers is blended analogous to the set of local models. The

same weighting functions are utilized. The blending yields scheduling of the con-

troller outputs rather than scheduling of the controllers or controller coefficients.

Hence, members of the corresponding parameterized set of LTI controllers do not

necessarily need to have fixed structure and dimension.

4. Stability and performance are established by extensive simulations, analogous to

classical gain scheduling. However, in the case of fuzzy controller design, global as

well as local specifications have to be derived from simulations, as the characteristic

dynamics of the fuzzy model can not be related to the dynamics of the set of local

models.

2.2.5 Summary

This section deals with gain scheduling and gain-scheduled controller designs (classical

gain scheduling, LPV and LFT based gain scheduling and fuzzy gain scheduling).

The main advantage of classical gain scheduling is that it inherits the benefits of lin-

ear controller design methods, including intuitive classical design tools and time as well

as frequency domain performance specifications. PID control is the most used control

strategy in industrial applications due to its relatively simple and intuitive design, hence

this is a major advantage with respect to other nonlinear controller design syntheses.

The approach thus enables the design of low computational effort controllers. Concep-

tually, gain scheduling involves an intuitive simplification of the problem into parallel

decompositions of the total system.

LPV and LFT synthesis require a true LPV model as a basis. In general however, gain

scheduling may be employed in the absence of an analytical model, e.g. on the basis of

a collection of plant linearizations. Consequently, controller design based on a whitebox

as well as a blackbox and even data-based ’modeling’ is possible. If the possibility of

fast parameter variations is not addressed in the design process, guaranteed properties

of the overall gain-scheduled design cannot be established. The main advantage of LPV

and LFT control synthesis is that they do account for parameter variations in the con-

troller design, which results in a priori guarantees regarding stability and performance

specifications. The main drawback of LPV and LFT control synthesis involves conser-

vativeness, which has to be introduced to enable solving the resulting LMIs. As a result

of that, current LPV and LFT syntheses comprise specific extensions of robust control

techniques rather than true generalizations. However, current and future research still

provides and will provide less conservative solutions.

The main drawback of fuzzy gain scheduling involves the lack of a relation between

the dynamic characteristics of the original nonlinear model and the fuzzy model. Even

locally, the dynamics of the fuzzy model can not be related to the original nonlinear

model. Fuzzy gain scheduling techniques may involve classical gain scheduling alike as

well as LPV techniques.
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The analysis and theorems stated herein are presented in an informal manner. Technical

details may (and should) be found in the associated references.

2.3 Discussion

This thesis is devoted to gain scheduling within this to LPV based gain scheduling

because in our opinion the biggest potential between gain scheduling approaches is in the

LPV based gain scheduling. Despite this, we described all main historical approaches to

gain scheduling as classical gain scheduling, LFT based gain scheduling and novel fuzzy

gain scheduling.

As we mentioned LPV based gain scheduling appear in 1988 when Jeff. S. Shamma

introduced the LPV paradigm in his Ph.D. thesis [1]. Today LPV paradigm has become

a standard formalism in systems and controls with lots of researches and articles devoted

to analysis, controller design and system identification of these models. Due to this

nowadays the LPV gain scheduling belongs to the most popular approaches to nonlinear

control design. But, as we mentioned in Chapter 1, there are still a lot of unsolved

problems. Browsing through literature we cannot find any general LPV based gain-

scheduled approach which will involve guaranteed cost and affine quadratic stability. In

addition there are very rudimentary approaches in switched and predictive control not

to mention the robust and discrete design approaches.

Currently, nowhere it is solved how to affect the performance quality separately in each

working point when direct LPV controller approach is used. Furthermore, there are

only few papers devoted to output feedbacks and they also not use fixed order output

feedbacks like PID/PSD controllers.

Most of the papers devoted to LPV based gain scheduling convert the stability condi-

tions into LMI problems. But currently we cannot find a general LMI approach with

guaranteed stability and guaranteed cost. Furthermore, nowhere it is solved how to

consider input/output constraints without need of on-line optimization.

Among other things, to find a solution for some of these unsolved problems (deficiencies)

were the main goals of the research which is summarized in this thesis.
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3

Summary of included papers

In this chapter one can find an overview of research results with a brief presentation of

included papers, which covers the main research results which was obtained during the

last 2.5 years. The papers have been reformatted for uniformity but otherwise they are

unchanged.

3.1 Introduction

In the initial stage of our research I with my supervisor Prof. Ing. Vojtech Veselý,

DrSc. developed a gain-scheduled controller design which guarantees the closed-loop

system stability and a guaranteed cost for continuous-time linear parameter-varying

(LPV) systems for all scheduled parameter changes with pre-defined rate of scheduled

parameter changes. These results were published in Journal of Process Control and

presented at several conferences (ICCC’13, ICPC’13, ELITECH’13, IN-TECH’13). After

that we expanded this theory to robust controller design for continuous and discrete-

time uncertain LPV systems with possibility for variable weighting in cost function.

Some of these results were published in Journal of Electrical Engineering, in Journal

of Electrical Systems and Information Technology and they were presented at several

conferences such as the European Control Conference 2014 (ICCC’14, CPS’14, SSKI’14,

ELITECH’14, ICPC’15).

In the middle stage of our research we modified our approaches from BMI (bilinear mat-

rix inequality) to LMI (linear matrix inequality) problem. This caused that our controller

synthesis works for high-order systems (50-60th order was tested). We successfully por-

ted our approaches to switched and model predictive controller design. Some of these

results have been published in Journal of the Franklin Institute, in Journal of Electrical

Engineering, in International Review of Automatic Control, in Asian Journal of Control

and will be presented at several IFAC symposiums and conferences as MICNON’15 or

ROCOND’15 (ICPC’15, ELITECH’15). Also some of these results are under review

process in journals International Journal of Control, Automation and Systems and in

Archives of Control Sciences.
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In the final stage we successfully developed a new stability condition where we could by-

pass the multi-convexity that significantly reduced the conservativeness of the controller

synthesis. In addition we added to the controller synthesis the input (hard) / output

(soft) constraints as well as input rate (soft) / output rate (soft) constraints where we do

not need online optimization. Publications of these results are only in the preliminary

stage but hopefully they will be published in high impact factor journals, too.

In the following sections one can find a brief presentation of the included papers.

3.2 Summary of included papers

Paper 1

V. Veselý, A. Ilka, Gain-scheduled PID controller design, Journal of Process Control, 23

(8) (2013) 1141–1148.

In the first paper one can find a linear parameter-varying based gain-scheduled con-

troller design which guarantees the closed-loop stability and the guaranteed cost for

all scheduled parameter changes. The proposed procedure is based on the Lyapunov

theory of stability, guaranteed cost and on the concept of multi-convexity. In the gain-

scheduled controller design procedure one can include the maximal value of the rate of

gain-scheduled parameter changes, which allows to decrease conservativeness and obtain

the controller with a given performance. The main results for the case of gain-scheduled

closed-loop stability analysis reduce to LMI (linear matrix inequality) condition and for

gain-scheduled controller synthesis to BMI (bilinear matrix inequality) one. One can

use a free and open source BMI solver PenLab. Another advantage of this method is the

fact that we can affect the quality and cost with weighting matrices R, Q, S. Numerical

examples illustrate the effectiveness of the proposed approach.

Paper 2

A. Ilka, V. Veselý, Gain-Scheduled Controller Design: Variable Weighting Approach,

Journal of Electrical Engineering, 65 (2) (2014) 116-120.

In the second paper one can find a linear parameter-varying based gain-scheduled con-

troller design which guarantees the closed-loop stability and the parameter-varying guar-

anteed cost for all scheduled parameter changes. The proposed procedure is also based on

the Lyapunov theory of stability, guaranteed cost and on the concept of multi-convexity.

In the gain-scheduled controller design procedure one can include also the maximal value

of the rate of gain-scheduled parameter changes, which allows to decrease conservative-

ness. To access the performance quality a new quadratic cost function is used, where

weighting matrices are time varying and depends on scheduled parameter. Using these

original variable weighting matrices we can affect performance quality separately in each
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working points and we can tune the system to the desired condition through all para-

meter changes. The class of control structure includes decentralised fixed order output

feedbacks like PID controller. Numerical examples illustrate the effectiveness of the

proposed approach.

Paper 3

V. Veselý, A. Ilka, Design of robust gain-scheduled PI controllers, Journal of the Franklin

Institute, 352 (2015) 1476-1494.

In this paper a novel methodology for robust gain-scheduled controller design is presen-

ted. The proposed design procedure is based on the robust stability condition developed

for an uncertain LPV system model introduced in this paper. The obtained results,

illustrated on examples, show the applicability of the designed robust gain-scheduled

controller and its ability to cope with polytopic model uncertainties. Several forms of

parameter dependent/quadratic Lyapunov functions are presented and tested by simula-

tions. Though the proposed robust controller design approach with parameter dependent

Lyapunov function does not consider quick changes of parameters (either uncertainty or

gain scheduling), simulation results prove the potential ability of the designed closed-

loop to withstand also these changes. The obtained results are in the form of BMI and

LMI approaches. The proposed approach contributes to the design tools for robust gain-

scheduled controllers. The obtained design results and their properties are illustrated

on simulation examples.

Paper 4

V. Veselý, A. Ilka, Robust Gain-Scheduled PID Controller Design for Uncertain LPV

Systems, Journal of Electrical Engineering, 66 (1) (2015) 19-25.

A novel methodology is proposed for robust gain-scheduled PID controller design for

uncertain LPV systems. The proposed design procedure is based on the parameter-

dependent quadratic stability approach. A new uncertain LPV system model has been

introduced in this paper. To access the performance quality, the approach of a parameter

varying guaranteed cost is used which allowed to reach the desired performance for

different working points. Several forms of parameter dependent quadratic stability are

presented which withstand arbitrarily fast model parameter variation or/and arbitrarily

fast gain-scheduled parameter variation. Numerical examples show the benefit of the

proposed method.
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Paper 5

A. Ilka, I. Ottinger, T. Ludwig, M. Tárńık, V. Veselý, E. Miklovičová, J. Murgaš, Ro-

bust Controller Design for T1DM Individualized Model: Gain Scheduling Approach,

International Review of Automatic Control (I.RE.A.CO.), (2) (2015)

This paper deals with the robust gain-scheduled controller design for individualized type

1 diabetes mellitus (T1DM) subject model. The controller is designed using LPV model

created from T1DM minimal model with two additional subsystems - absorption of

digested carbohydrates and subcutaneous insulin absorption. Data collected from con-

tinuous glucose monitoring with the help of pharmacodynamics and pharmacokinetics

characteristics were used for model identification. The closed-loop stability and cost for

all scheduled parameters is guaranteed by the controller design approach. In contrast to

publications in literature we presented a completely new LPV description of Bergman’s

minimal model and a new approach to controller design. The obtained design proced-

ure can be used in systems where we need to save the operation energy (e.g. low-cost

micro-controllers). The benefits of the presented approach are shown in the simulation

results.

Paper 6

V. Veselý, A. Ilka, Novel approach to switched controller design for linear continuous-

time systems, Accepted in Asian Journal of Control, Acceptance day: 22. May, 2015.

In this paper one can find a novel approach to the design of an output feedback switched

controller with an arbitrary switching algorithm for continuous-time invariant systems

which is described by a novel plant model as a gain-scheduled plant using the multiple

quadratic stability and quadratic stability approaches. In the proposed design procedure

there is no need to use the notion of the ”dwell-time”. The obtained results are in

the form of bilinear matrix inequalities (BMI). Numerical examples show that in the

proposed method the design procedure is less conservative and gives more possibilities

than that described in the papers published previously.

Paper 7

V. Veselý, A. Ilka, Robust Switched Controller Design for Nonlinear Continuous Systems,

Accepted for publication and for presentation at 1st IFAC conference on Modelling and

Control of Nonlinear Systems (MICNON’15), Saint Petersburg, Russian Federation,

June 24-26, 2015.

A novel approach is presented to robust switched controller design for nonlinear

continuous-time systems under an arbitrary switching signal using the gain schedul-

ing approach. The proposed design procedure is based on the robust multi parameter
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dependent quadratic stability condition. The obtained switched controller design pro-

cedure for nonlinear continuous-time systems is in the bilinear matrix inequality form

(BMI). The obtained results, illustrated on examples, show the applicability of the

designed switched robust gain-scheduled controller and its ability to cope with model

uncertainties. In the paper several forms of parameter dependent/quadratic Lyapunov

functions are proposed. The properties of the obtained design are illustrated on simula-

tion examples.

Paper 8

A. Ilka, V. Veselý, Gain-Scheduled MPC Design for Nonlinear Systems with Input Con-

straints, Accepted for publication and for presentation at 1st IFAC conference on Mod-

elling and Control of Nonlinear Systems (MICNON’15), Saint Petersburg, Russian Fed-

eration, June 24-26, 2015.

A novel methodology is proposed for discrete model predictive gain-scheduled controller

design for nonlinear systems with input(hard)/output(soft) constraints for finite and

infinite prediction horizons. The proposed design procedure is based on the linear

parameter-varying (LPV) paradigm, affine parameter-dependent quadratic stability and

on the notion of the parameter-varying guaranteed cost. The design procedure is in the

form of BMI (we can use a free and open source BMI solver). Numerical examples show

the benefits for the finite and infinite prediction horizon.

Paper 9

V. Veselý, A. Ilka, Unified Robust Gain-Scheduled and Switched Controller Linear

Continuous-Time Systems, Submitted to International Review of Automatic Control

(I.RE.A.CO), Submitted on 25. May, 2015.

The proposed paper addresses the problem how to obtain the new unified procedure

to design a robust gain-scheduled and switched controller with arbitrary switching for

continuous-time systems described by a novel robust plant model using the parameter

dependent quadratic stability (PDQS) approach. The obtained unified controller design

procedure ensures the closed-loop stability and guaranteed cost for a prescribed rate of

change of the system switching (gain-scheduled) variable. In some real cases the rate of

change of the switching signal is finite. This assumption was used in the paper to obtain

the switched controller design procedure. Numerical examples illustrate the effectiveness

of the proposed approach.
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4

Gain-scheduled PID controller design

(Paper 1)

Abstract

Gain scheduling (GS) is one of the most popular approaches to nonlinear control design

and it is known that GS controllers have a better performance than robust ones. Follow-

ing the terminology of control engineering, linear parameter-varying (LPV) systems are

time-varying plants whose state space matrices are fixed functions of some vector of vary-

ing parameters. Our approach is based on considering that the LPV system, scheduling

parameters and their derivatives with respect to time lie in a priori given hyper rect-

angles. To guarantee the performance we use the notion of guaranteed costs. The class

of control structure includes centralized, decentralized fixed order output feedbacks like

PID controller. Numerical examples illustrate the effectiveness of the proposed approach.

Keywords: Gain-scheduled control, controller design, structured controller, decentral-

ized control, MIMO LPV systems.

4.1 Introduction

Linear parameter-varying systems are time-varying plants whose state space matrices

are fixed functions of some vector of varying parameters θ(t). Linear parameter varying

(LPV) systems have the following interpretations:

– they can be viewed as linear time invariant (LTI) plants subject to time-varying

known parameters θ(t) ∈ 〈θ θ〉,

– they can be models of linear time-varying plants,

– they can be LTI plant models resulting from linearization of the nonlinear plants

along trajectories of the parameter θ(t) ∈ 〈θ θ〉 which can be measured.
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For the first and third class of systems, parameter θ can be exploited for the control

strategy to increase the performance of closed-loop systems. Hence, in this paper the

following LPV system will be used:

ẋ = A(θ(t))x+B(θ(t))u

y = Cx
(4.1)

where for the affine case

A(θ(t)) = A0 +A1θ1(t) + . . .+Apθp(t) (4.2)

B(θ(t)) = B0 +B1θ1(t) + . . .+Bpθp(t) (4.3)

and x ∈ Rn is the state, u ∈ Rm is a control input, y ∈ Rl is the measurement output

vector, A0, B0, Ai, Bi, i = 1, 2 . . . p, C are constant matrices of appropriate dimension,

θ(t) ∈ 〈θ θ〉 ∈ Ω and θ̇(t) ∈ 〈θ̇ θ̇〉 ∈ Ωt are vectors of time-varying plant parameters

which belong to the known boundaries.

In the case of nonlinear dynamics a widely used idea among control engineers is to

linearize the plant around several operating points and to use linear control tools to

design a controller for each of these points. The actual controller is implemented using

the gain scheduling approach. Success of such an approach depends on establishing the

relationship between a nonlinear system and a family of linear ones. There are two main

problems:

1. Stability results: stability of the closed-loop nonlinear system and of the closed-

loop family of linear systems, when scheduled parameters are changes.

2. Approximation results which provide a direct relationship between the solution of

closed-loop nonlinear systems and the solution of associated linear systems [1], [2]

The main motivation for our work lies in [3], [4], [5], [6], [7], [8], where in [3] the LPV

controller is designed using the bounded real lemma for continuous and discrete time

LPV systems such as to guarantee H∞ performance.

Paper [4] discusses extensions of H∞ synthesis techniques to allow for controller depend-

ence on time-varying but measured parameters. In this case a higher performance can

be achieved by control laws that incorporate measurements of θ to the control algorithm.

Main results can be formulated as follows: Find a control structure such that the LPV

controller satisfies closed-loop stability and minimizes of the induced L2 norm of corres-

ponding closed-loop systems. The author’s approach [5] uses a bounding technique based

on parameter-dependent Lyapunov function for design of PD controllers. Note that if

LPV synthesis problem is solvable, then the induced L2-norm of the closed-loop system

is less than some given constant. The proposed approach represents generalization of

the standard sub-optimal H∞ control problem. In paper [6] the author shows that the

performance of LPV systems with LPV controller can be improved by combining this
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LMI method with MPC techniques and optimizing the H2 (H∞) norm. The author [8]

tackles the design problem of gain scheduled controllers for LPV systems via parameter-

dependent Lyapunov function. The author proposed a new design method as a set LMIs

with single line search parameters. The author tackles two problems: H∞ type problem

and H2. Recently, [9] proposed the design method for the gain scheduled problem using

a similar technique to [8]. In the above paper the LPV controller is given in time domain

with the same or lower order than the LPV systems using H∞ optimization approach.

The gain scheduling controller design for discrete-time systems is given in [10]. Paper

[11] presents the design of gain-scheduled PI controller, when the uncertainty of the sys-

tem is assumed to be the difference between the nonlinear model and the nominal linear

model. PI controller is designed using quadratic Lyapunov H∞ performance where index

γ is H∞ norm of closed-loop system, considered as closed-loop performance measure.

Minimizing γ via LMI the gain scheduled controller is obtained. In [12] the authors

design a novel gain scheduling controller for synchronous generator. Improved stability

analysis and gain scheduled controller synthesis for parameter-dependent systems are

proposed in [7]. Sufficient conditions for robust stability as well as conditions for the

existence of a gain-scheduled controller are given in terms of a set of LMIs. The author’s

approach is based on the notion of quadratic stability and linear fractional representa-

tion for parameter dependent systems. The survey of scheduled controller analysis and

synthesis can be found in excellent papers [1] and [2].

In this paper our approach is based on:

– A consideration of the LPV systems (4.1). The scheduling parameters θi, i =

1, 2, . . . p and their derivatives with respect to time are supposed to lie in a priori

given hyper rectangles.

– Affine quadratic stability (AQS) introduced by [13].

– To guarantee the performance we use the notion of guaranteed cost to optimize

the given cost function.

– The class of control structure includes centralized, decentralized fixed order output

feedback like PID controller.

The gain-scheduled controller design procedure is in the form of BMI. A feasible solution

for closed-loop system ensures the affine quadratic stability [13] and guaranteed cost

when the performance is defined in Q,R, S structure (see eq. (4.10)).

Quadratic stability (one Lyapunov function with one constant positive definite matrix

cover all affine controller design procedure) is more conservative than AQS in general.

AQS (Lyapunov function has an affine structure like (4.2)) incorporates information

about the rate of variation θ̇(t) to reduce conservatism. As we mentioned, in this paper

the AQS approach will be used.

Our notations are standard. D ∈ Rm×n denotes the set of real m×n matrices. Im is an

m×m identity matrix. If the size can be determined from the context, we will omit the

subscript. P > 0 (P ≥ 0) is a real symmetric, positive definite (semi-definite) matrix.
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The paper is organized as follows. Section 4.2 brings preliminaries and problem formu-

lation. The main result is presented in Section 4.3. In Section 4.4, numerical examples

illustrate the effectiveness of the proposed approach.

4.2 Preliminaries and problem formulation

Suppose that the state-space representation of an LPV system with p independent

scheduling parameters is governed by (4.1). The scheduling parameters θi and their

derivatives with respect to time θ̇i are supposed to lie in given hyper rectangles Ω and

Ωt, respectively. For design of the I part of the controller system, equation (4.1) has

to be augmented, see [14] and example 1. Without change of notation the new aug-

mented matrices dimensions are A(θ) ∈ R(n+l)×(n+l), B(θ) ∈ R(n+l)×m, C ∈ R2l×2l

and Cd ∈ Rl×l is the output matrix for D part of controller. The output feedback

gain-scheduled control law is considered for PID controller in the form

u(t) = F (θ)y + Fd(θ)ẏd = F (θ)Cx+ FdCdẋ (4.4)

where yd = Cdx is the output feedback for the D part of the controller,

F (θ) = F0 +

p∑
i=1

Fiθi ∈ Rm×2l (4.5)

is the static output feedback gain scheduled matrix for the PI controller and

Fd(θ) = Fd0 +

p∑
i=1

Fdiθi ∈ Rm×m (4.6)

is the static output feedback gain scheduled matrix for the D part of controller.

Remark 4.1. Since the reference signal does not influence the closed-loop stability, we

assume that it is equal to zero.

Remark 4.2. If the derivative part of the controller includes some filter, the model of

this filter can be included in the system model.

The closed-loop system is then

[I −B(θ)Fd(θ)Cd]ẋ = [A(θ) +B(θ)F (θ)C]x (4.7)

Ad(θ)ẋ = Ac(θ)x (4.8)

ẋ = Acd(θ)x (4.9)

where

Acd(θ) = Ad(θ)
−1Ac(θ)x

Ad(θ) = I −B(θ)Fd(θ)Cd

Ac(θ) = A(θ) +B(θ)F (θ)C
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It is well known that the fixed order dynamic output feedback control design problem is

a special case of the static output feedback problem. To access the performance quality

a quadratic cost function [15] known from LQ theory is often used in the form

J =

∫ ∞
0

(xTQx+ uTRu+ ẋTSẋ)dt (4.10)

with Q = QT ≥ 0, R > 0 and S = ST ≥ 0. The guaranteed cost is defined in a standard

way.

Definition 4.1. Consider system (4.1) with control algorithm (4.4). If there exists a

control law u∗ and a positive scalar J∗ such that the closed-loop system (4.7) is stable

and the value of closed-loop cost function (4.10) satisfies J ≤ J∗, then J∗ is said to be

a guaranteed cost and u∗ is said to be guaranteed cost control law for system (4.1). �

Definition 4.2. [13] The linear closed-loop system (4.7) for θ ∈ Ω and θ̇ ∈ Ωt is affinely

quadratically stable if and only if there exist p + 1 symmetric matrices P0, P1, . . . , Pp
such that

P (θ) = P0 +

p∑
i=1

Piθi > 0 (4.11)

and for the first derivative of Lyapunov function V (θ) = xTP (θ)x along the trajectory

of closed-loop system (4.7) it holds

dV (x, θ)

dt
= xT

(
Acd(θ)

TP (θ) + P (θ)Acd(θ) +
dP (θ)

dt

)
x < 0 (4.12)

where

dP (θ)

dt
=

p∑
i=1

Piθ̇i ≤
p∑
i=1

Piρi

�

From LQ theory we introduce the well known results.

Lemma 4.1. Consider the closed-loop system (4.7). Closed-loop system (4.7) is affinely

quadratically stable with guaranteed cost if and only if the following inequality holds

Be = min
u

{
dV (θ)

dt
+ xTQx+ uTRu+ ẋTSẋ

}
≤ 0 (4.13)

for all θ ∈ Ω and θ̇ ∈ Ωt �

4.3 Main results

In this section the gain scheduled controller design procedure which guarantees the

affine quadratic stability and guaranteed cost for θ ∈ Ω and θ̇ ∈ Ωt is presented. The
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main results for the case of gain scheduled closed-loop stability analysis reduce to LMI

condition and for gain scheduled controller synthesis to BMI one.

The main result of this section, the gain scheduled design procedure, relies in the concept

of multi-convexity, that is, convexity along each direction θi of the parameter space. The

implications of multiconvexity for scalar quadratic functions are given in the next lemma

[13].

Lemma 4.2. Consider a scalar quadratic function of θ ∈ Rp.

f (θ1, . . . , θp) = a0 +

p∑
i=1

aiθi +

p∑
i,j=1

bijθiθj +

p∑
i=1

ciθ
2
i (4.14)

and assume that f (θ1, . . . , θp) is multi-convex, that is

∂2f(θ)

∂θ2
i

= 2ci ≥ 0 (4.15)

for i = 1, 2, . . . , p. Then f(θ) is negative for all θ ∈ Ω if and only if it takes negative

values at the corners of θ. �

Using Lemma 4.2 the following theorem is obtained

Theorem 4.1. Closed-loop system (4.7) is AQS with guaranteed cost if there exist p+

1 definite matrices P0, P1, P2, . . . , Pp such that P (θ) (4.11) is positive defined for all

θ ∈ Ω, matrices N1, N2, Q,R, S and controller gain scheduled matrices F (θ) and Fd(θ),

satisfying

M(θ) < 0; θ ∈ Ω (4.16a)

Mii ≥ 0; i = 1, 2, . . . , p (4.16b)

where

M(θ) = M0 +

p∑
i=1

Miθi +

p∑
i=1

p∑
j=1

Mijθiθj

M0 =

[
W110 W120

W120
T W220

]

Mi =

[
W11i W12i

W12i
T W22i

]

Mij =

[
W11ij W12ij

W12ij
T W22ij

]
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W110 = N1Ad0 +Ad
T
0 N

T
1 + CTd Fd

T
0 RFd0Cd + S

W11i = N1Adi +Ad
T
i N

T
1 + CTd Fd

T
0 RFdiCd

+ CTd Fd
T
i RFd0Cd

W11ij = N1Adij +Ad
T
ijN

T
1 + CTd Fd

T
i RFdjCd

W120 = P0 +Ad
T
0 N

T
2 −N1Ac0 + CTd Fd

T
i RF0C

W12i = Pi +Ad
T
i N

T
2 −N1Aci + CTd Fd

T
0 RFiC

+ CTd Fd
T
i RF0C

W12ij = Ad
T
ijN

T
2 −N1Acij + CTd Fd

T
i RFjC

W220 =

p∑
k=1

Pkρk −N2Ac0 −AcT0 NT
2 +Q

+ CTF T0 RF0C; ρk ∈ Ωt

W22i = −N2Aci −AcTi NT
2 + CTF T0 RFiC

+ CTF Ti RF0C

W22ij = −N2Acij −AcTijNT
2 + CTF Ti RFjC

Ac0 = A0 +B0F0C

Aci = Ai +B0FiC +BiF0C

Acij = BiFjC

Ad0 = I −B0Fd0Cd

Adi = −B0FdiCd −BiFd0Cd

Adij = −BiFdjCd

�

Proof. Proof is based on Lemmas 4.1 and 4.2. From (4.8) and (4.12) we can obtain

[2N1ẋ+ 2N2x]T [Ad(θ)ẋ−Ac(θ)x] = 0 (4.17)

and

dV

dt
= ẋTP (θ)x+ xTP (θ)ẋ+ xT Ṗ (θ)x (4.18)

Summarizing the above two equations, for the time derivative of Lyapunov function one

obtains

dV

dt
= zT

[
N1Ad(θ) +Ad(θ)

TNT
1 −N1Ac(θ) +ATdN

T
2 + P (θ)

∗ −N2Ac(θ)−ATc (θ)NT
2 +

∑p
i=1 Piρi

]
z (4.19)

where N1, N2 ∈ Rn×n are auxiliary matrices and zT =
[
ẋT xT

]
. When one sub-

stitutes control algorithm (4.4) to the right hand side of (4.13) and then the obtained

result is combined with (4.19) and substituted to (4.13), after some manipulation, using

Lemma 4.2 we obtain (4.16), which proofs the Theorem 4.1.
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Let us denote θm =
∑p

i=1 θi, multiplying (4.16a) with
∑p

i=1
θi
θm

assuming that θm 6= 0

and θm ∈ 〈θm, θm〉 we obtain

M0

θ2
m

p∑
i=1

p∑
j=1

θiθj +

p∑
i=1

p∑
j=1

Mi

θm
θiθj +

p∑
i=1

p∑
j=1

Mijθiθj < 0 (4.20)

After small manipulation

p∑
i=1

p∑
j=1

[
M0 +Miθm +Mijθ

2
m

]
θiθj < 0 (4.21)

The closed-loop system will be stable or (4.21) holds if

Kij +Kji < 0, i = 1, 2, . . . , p, j = i, i+ 1, . . . , p (4.22)

where

Kij = M0 +Miθm +Mijθ
2
m

Using stability conditions (4.22) and Lemma 4.2 if the following inequalities are met,

the closed-loop system is affine quadratically stable

2M0 + (Mi +Mj) θm + (Mij +Mji) θ
2
m < 0

2M0 + (Mi +Mj) θm + (Mij +Mji) θ
2
m < 0

Mij +Mji ≥ 0

(4.23)

for i = 1, 2, . . . , p, j = i, i+ 1, . . . , p.

Lemma 4.3. Closed-loop system (4.7) is AQS with guaranteed cost if there exist p+ 1

definite matrices P0, P1, . . . , Pp such that for all θ ∈ Ω, P (θ) (4.11) is positive definite,

matrices N1, N2 and gain scheduled matrices F (θ) and Fd(θ) are satisfying (4.23). �

If the solution of Theorem 4.1 or Lemma 4.3 are feasible:

– For the case of closed-loop system stability, with respect to matrices N1, N2 and

positive definite matrix P (θ) the closed-loop system is affine quadratically stable

with guaranteed cost and for θ ∈ Ω, θ̇ ∈ Ωt. For this case gain matrices (4.4), (4.5)

and (4.6) are known and (4.16), (4.23) reduces to LMI.

– For the gain-scheduled controller design with respect to matrices F (θ), Fd(θ), N1,

N2 and positive definite matrix P (θ), the closed-loop system is affine quadratically

stable with guaranteed cost and for θ ∈ Ω, θ̇ ∈ Ωt. For this case (4.16) and (4.23)

are BMI.
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4.4 Examples

The first example is taken from paper [16]. Consider a simple linear time-varying plant

with parameter varying coefficients

ẋ(t) = a(α)x(t) + b(α)u(t)

y(t) = x(t)
(4.24)

where α(t) ∈ R is an exogenous signal that changes the parameters of the plant as

follows

a(α) = −6− 2

π
arctan

( α
20

)
(4.25)

b(α) =
1

2
+

5

π
arctan

( α
20

)
(4.26)

Let the problem be the design of a gain scheduled PID controller which will guarantee

the closed-loop stability and guaranteed cost for α ∈ 〈0, 100〉. We will demonstrate

that with the gain-scheduled controller we will obtain practically identical behaviour for

closed-loop system. To be able to demonstrate this feature, let us divide the working

area to 3 sections with 4 transfer functions in points α = 0, 15, 50, 100 so that in each

area, where the plant parameter changes, they are nearly linear (Fig. 4.1).
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Figure 4.1: Exogenous signal α(t)

In these working points the calculated transfer functions are:

Gs1|α=0 =
0.5

s+ 6
, Gs2|α=15 =

1.5242

s+ 6.4097

Gs3|α=50 =
2.0642

s+ 6.6257
, Gs4|α=100 =

2.6858

s+ 6.8743

(4.27)

We transform the above transfer functions to the time domain to obtain the scheduling

model in the form (4.1). The obtained model was extended for the gain-scheduled PID
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controller design. The extended model is given as follows

A0 =

[
−6.4370 0

1 0

]
, A1 =

[
−0.2050 0

0 0

]

A2 =

[
−0.1080 0

0 0

]
, A3 =

[
−0.1240 0

0 0

]

B0 =

[
1.5930

0

]
, B1 =

[
0.5120

0

]

B2 =

[
0.2700

0

]
, B3 =

[
0.3110

0

]

C =

[
1 0

0 1

]
, D = 0

Using Theorem 4.1 for θi ∈ 〈−1, 1〉, i = 1, 2, 3 we obtain gain scheduled controller in the

form:

GrGS = Gr0 +Gr1θ1 +Gr2θ2 +Gr3θ3 (4.28)

where

Gr0 =
0.4386s2 + 2.8850s+ 4.4678

s

Gr1 = −1.72× 10−6s2 + 9.49× 10−5s+ 5.26× 10−5

s

Gr2 = −0.0283s2 + 1.5645s+ 0.8676

s

Gr3 = −0.0056s2 + 0.3085s+ 0.1711

s

Note that if plant models in all working points are equal, in this case we obtain Gri = 0,

i = 1, 2, . . . , p. If some of Gri ≈̇ 0 it indicates that some parameters of plant model are

close to other ones.

Using (4.1) and control algorithm

u = F (θ) (Cx− w) + Fd(θ)Cdẋ (4.29)

one obtains the structure for simulation of the closed-loop system with gain scheduled

PID controller.

Simulation results (Figs. 4.2, 4.3) confirm that Theorem 4.1 holds. Fig. 4.2 demon-

strates that with the gain-scheduled controller we have obtained practically identical

behaviour for closed-loop system even if α changes as shown in Fig. 4.3. In figures, y(t)

is the output signal, w(t) is the setpoint, u(t) is the controller output, α(t) is exogenous

signal on which the system depends and θ is the gain scheduled parameter.
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Figure 4.2: Simulation results

0 20 40 60 80 100 120
−1

−0.5

0

0.5

1

t[s]

A
m
p
li
tu
d
e

θ(t)

θ1
θ2
θ3

0 20 40 60 80 100 120
0

20

40

60

80

100

t[s]

A
m
p
li
tu
d
e

α(t)

Figure 4.3: θ(t), α(t)

The second example is taken from paper [8]. The model in the form (4.1) is extended

for gain scheduled PID controller design. The extended model is given as follows for

θ1 ∈ 〈−1, 1〉

A0 =


−4 3 5 0

0 7 −5 0

0.1 −2 −3 0

0 1 0 0

 , A1 =


1 0 1 0

2 0 −5 0

2 5 1.5 0

0 0 0 0



B0 =


0

16

10

0

 , B1 =


1

−5

3.5

0

 , C =

[
0 1 0 0

0 0 0 1

]

Using Lemma 4.3 we have obtained the gain-scheduled controller in the form (4.4) which

after small manipulation can be transformed to the form

GrGS = Gr0 +Gr1θ1 (4.30)

where

Gr0 =
0, 139s2 + 2, 0381s+ 0, 2401

s

Gr1 = −0, 0027s2 + 0, 014s+ 0, 004

s

The simulation results (Figs. 4.4, 4.5, 4.6, 4.7) confirm, that Lemma 4.3 holds. Figs.

4.4, 4.5, 4.6 demonstrate that with the gain-scheduled controller designed using Lemma

4.3 we are able to stabilize and control system with such parameter changes. We can

see in Fig. 4.4 that at θ = 1 the system is slow, and the controller output is positive
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Figure 4.4: Simulation results for θ = 1

although when θ = 0 or θ = −1 the system is rapidly fast and the controller output is

negative as shown in Figs. 4.5, 4.6. Fig. 4.7 shows a case, when θ is changing linearly

in interval 〈−1, 1〉.
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Figure 4.5: Simulation results for
θ = 0
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Figure 4.6: Simulation results for
θ = −1

The third example is a realistic model from Humusoft (magnetic levitation, for more

detail see www.humusoft.com). The model consists of a coil and a steel ball levitating

in a magnetic field. Position of the steel ball is affected by the intensity of the magnetic
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Figure 4.7: Simulation results for θ ∈ 〈−1, 1〉

field and is measured by a linear induction sensor connected to A / D converter. In terms

of system theory it is an unstable nonlinear dynamic system with one input (amplifier

voltage for coil) and one output (ball position).

We split the ball position (voltage converted by the data acquisition card and scaled to

0÷1 machine unit [MU]) into 3 operating points

1. Position: 0.3 MU −→ θ1 = −1, θ2 = −1

2. Position: 0.5 MU −→ θ1 = +1, θ2 = −1

3. Position: 0.7 MU −→ θ1 = +1, θ2 = +1

In these working points identified1 plant transfer functions are

Gs1 =
2.0921

0.000264s2 + 0.0004s− 1

Gs2 =
2.2487

0.00027s2 + 0.0032s− 1

Gs3 =
2.1205

0.000155s2 + 0.0065s− 1

(4.31)

1Transfer functions were identified in closed-loop system
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The above transfer functions are transformed to the time domain to obtain the scheduling

model in the form (4.1). The obtained model is extended for the gain-scheduled PID

controller design. The extended model is given as follows

A0 =

 0 4.1667× 103 0

1 −1 0

0 1 0

 , A1 =

 0 0 0

0 −5.5 0

0 0 0

 , A2 =

 0 833.3333 0

0 1.5 0

0 0 0


B0 =

 8.7083× 103

0

0

 , B1 =

−805

0

0

 , B3 =

 2.7667× 103

0

0

 , C =

[
0 1 0

0 0 1

]

Using Lemma 4.3 with weighting matrices R = rI, r = 1, Q = qI, q = 1 × 10−1, S =

sI, s = 1 × 10−3 (when increasing q or s with respect to r in the first case dynamic

behaviour of the closed-loop system becomes faster and in the second case the overshoot

of closed-loop system is smaller, for more detail see [17]) we have obtained gain scheduled

controller in the form (4.4) which after small manipulation can be transformed to the

form

GrGS = Gr0 +Gr1θ1 +Gr2θ2 (4.32)

where

Gr0 =
0.0926s2 + 2.2966s+ 1.7304

s

Gr1 = −0.02s2 + 0.0103s− 0.0007

s

Gr2 =
0.0017s2 − 0.0009s+ 0.0016

s

Simulation results are shown in Fig. 4.8, where y(t) is the output signal, w(t) is the

setpoint, u(t) is the controller output and θ1, θ2 are the scheduled parameters calculated

from the output signal.

4.5 Conclusion

The paper addresses the problem of the gain-scheduled controller design which ensures

the closed-loop stability and guaranteed cost for all scheduled parameter changes. The

proposed procedure is based on the Lyapunov theory of stability, guaranteed cost and

BMI. In the gain-scheduled controller design procedure one can include the maximal

value of the rate of gain-scheduled parameter changes, which allows to decrease conser-

vativeness and obtain the controller with a given performance. The obtained simulation

results show that the gain-scheduled controller may give a better performance of closed-

loop system for all changes of scheduled parameter than a classical one including robust

controller. Another advantage of this method is the fact that we can affect the quality

and cost with weighting matrices R,Q, S. Numerical examples illustrate the effectiveness

of the proposed approach.
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5

Gain-Scheduled Controller Design:

Variable Weighting Approach (Paper 2)

Abstract

Among the most popular approaches to nonlinear control is gain-scheduled (GS) con-

troller, which can have better performance than robust and other ones. Our approach

is based on a consideration that in linear parameter varying (LPV) system, scheduling

parameters and their derivatives with respect to time are supposed to lie in a priori given

hyper rectangles. To access the performance quality a new quadratic cost function is

used, where weighting matrices are time varying depends on scheduled parameter. The

class of control structure includes decentralised fixed order output feedbacks like PID

controller. Numerical examples illustrate the effectiveness of the proposed approach.

Keywords: Gain-scheduled control, decentralised control, Lyapunov function, quad-

ratic cost function, MIMO LPV systems, PID controller.

5.1 Introduction

Consider a linear parameter varying (LPV) system with state space matrices which are

fixed functions of known vector parameter varying θ(t). This model can be a linear time

invariant (LTI) plant model which is result from linearisation of the nonlinear plants

along trajectories of the known parameter θ(t) ∈ 〈θ, θ〉. In this note the following LPV

system will be used

ẋ = A(θ(t))x+B(θ(t))u

y = Cx
(5.1)
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where

A(θ(t)) = A0 +A1θ1(t) + . . .+Apθp(t)

B(θ(t)) = B0 +B1θ1(t) + . . .+Bpθp(t)

and x ∈ Rn is the state, u ∈ Rm is a control input, y ∈ Rl is the measurement output

vector, A0, B0, Ai, Bi, i = 1, 2, . . . , p, C are constant matrices of appropriate dimension,

θ(t) ∈ 〈θ, θ〉 ∈ Ω vector of time-varying plant parameters.

The main motivation for our work lies in [1–5]. In the paper [1] the author tackles the

design problem of gain scheduled controllers for LPV systems via parameter-dependent

Lyapunov function. Recently, [2] proposed the design method for gain scheduled problem

using a similar technique to [1]. Improved stability analysis and gain scheduled controller

synthesis for parameter-dependent systems are proposed in [3]. Survey of scheduled

controller analysis and synthesis are presented in papers [4] and [5].

In this note our approach is based on

• A consideration of the LPV systems (5.1), scheduling parameters θi, i = 1, 2, . . . , p

and their derivatives with respect to time are supposed to lie in a priori given

hyper rectangles, θ ∈ Ω and θ̇ ∈ Ωt.

• Affine quadratic stability (AQS) introduced by [6].

• We use the notion of guaranteed cost to guarantee the performance of closed-loop

system.

• The class of control structure includes decentralised fixed order output feedback

like PID controller.

The paper is organised as follows. Section 5.2 brings preliminaries and problem formu-

lation. The main result is presented in Section 5.3. In Section 5.4, numerical example

illustrate the effectiveness of the proposed approach.

5.2 Preliminaries and Problem Formulation

Consider an LPV system with p independent scheduling parameters in the form (5.1).

The output feedback control law is considered for PID controller in the form

u(t) = F (θ)y + Fd(θ)ẏ = F (θ)Cx+ FdCdẋ (5.2)

where

F (θ) = F0 +

p∑
i=1

Fiθi
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is a static output feedback gain scheduled matrix for PI controller and

Fd(θ) = Fd0 +

p∑
i=1

Fdiθi

is a static output feedback gain scheduled matrix for D part of controller. Substituting

(5.2) to (5.1) and after some manipulation we can obtain the closed-loop system in the

following form

Ad(θ)ẋ = Ac(θ)x (5.3)

where

Ad(θ) = I −B(θ)Fd(θ)Cd

Ac(θ) = A(θ) +B(θ)F (θ)C

To access the performance quality a quadratic cost function [7] known from LQ theory

is often used. In this note the original quadratic cost function is used, where weighting

matrices depends on scheduling parameters. Using this approach we can affect on per-

formance quality in each working point separately. The quadratic cost function is in the

form

J(θ) =

∫ ∞
0

(
xTQ(θ)x+ uTRu+ ẋTS(θ)ẋ

)
dt (5.4)

where

Q(θ) = Q0 +

p∑
i=1

Qiθi, Qi = QTi ≥ 0

S(θ) = S0 +

p∑
i=1

Siθi, Si = STi ≥ 0

and R > 0. The guaranteed cost is defined in a standard way.

Definition 5.1. Consider the system (5.1) with control algorithm (5.2). If there exists

a control law u∗ and a positive scalar J∗ such that the closed-loop system (5.3) is stable

and the value of closed-loop cost function (5.4) satisfies J ≤ J∗ then J∗ is said to be a

guaranteed cost and u∗ is said to be guaranteed cost control law for system (5.1).

Definition 5.2. [8] The linear closed-loop system (5.3) for θ ∈ Ω and θ̇ ∈ Ωt is affinally

quadratically stable if and only if there exist p + 1 symmetric matrices P0, P1, . . . , Pp
such that

P (θ) = P0 +

p∑
i=1

Piθi > 0 (5.5)
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and for the first derivative of Lyapunov function V (θ) = xTP (θ)x along the trajectory

of closed-loop system (5.3) holds

dV (x, θ)

dt
= xTVv(θ)x < 0 (5.6)

where

Vv(θ) = Acd(θ)
TP (θ) + P (θ)Acd(θ) +

dP (θ)

dt

dP (θ)

dt
=

p∑
i=1

Piθ̇i ≤
p∑
i=1

Piρi

Acd(θ) = Ad(θ)
−1Ac(θ)

From LQ theory we introduce the well known results.

Lemma 5.1. Consider the closed-loop system (5.3). Closed-loop system (5.3) is affinally

quadratically stable with guaranteed cost if and only if the following inequality holds

Be = min
u

{
dV (θ)

dt
+ xTQ(θ)x+ uTRu+ ẋTS(θ)ẋ

}
≤ 0 (5.7)

for all θ ∈ Ω and θ̇ ∈ Ωt

5.3 Main Results

In this section we presented the gain scheduled controller design procedure which guar-

antees the affine quadratic stability and required guaranteed costs for all θ ∈ Ω and

θ̇ ∈ Ωt. The main results for the case of gain scheduled closed-loop stability analysis

reduces to LMI condition and for gain scheduled controller synthesis to BMI one.

The main results of this section is given by following theorem

Theorem 5.1. Closed-loop system (5.3) is AQS if there exists p+1 symmetric matrices

P0, P1, . . . , Pp, satisfying (5.5), matrices N1 and N2 and gain scheduled matrices F (θ)

and Fd(θ) satisfying.

Mij +Mji < 0

i = 1, 2, . . . , p

j = 1, 2, . . . , p

(5.8)

where

Mij =

[
W ij

11 W ij
12

W ij
12

T
W ij

22

]
(5.9)
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W ij
11 = N1A

ij
d + (Aijd )

T
N1 +

S0

θ2
m

+
1

θm
Si + CTd F

ij
d Cd

W ij
12 = −N1A

ij
c + (Aijd )

T
NT

2 +
P0

θ2
m

+
1

θm
Pi

+ CTd F
ij
d C

W ij
22 = −N2A

ij
c − (Aijc )

T
NT

2 +
1

θ2
m

(
p∑

k=1

Pkρk +Q0

)

+
1

θm
Qi + CTF ijp C

Aijd =
1

θ2
m

I −
[

1

θ2
m

B0Fd0 +
1

θm
B0Fdi +

1

θm
BiFd0

+ BiFdj
]
Cd

F ijd =
1

θ2
m

Fd
T
0 RFd0 +

1

θm

(
Fd0RFdi + Fd

T
i

+ FdiRFd0) + Fd
T
i RFdj

θm =

p∑
i=1

θi

Aijc =
1

θ2
m

(A0 +B0F0C) +
1

θm
(Ai +B0FiC

+ BiF0C) +BiFjC

Fd
ij
r =

1

θ2
m

Fd
T
0 RF0 +

1

θm

(
Fd

T
0 RFi + FdiRF0

)
+ FdiRFj

F ijp =
1

θ2
m

F T0 RF0 +
1

θm

(
F T0 RFi + FiRF0

)
+ FiRFj

Proof. Proof is based on the Lemma 5.1. Time derivative of Lyapunov function when

we using free matrix weighting approach is in the form

dV

dt
= zT

[
Z11 Z12

Z21 Z22

]
z (5.10)

where

Z11 = N1Ad(θ) +ATd (θ)NT
1

Z12 = −N1Ac(θ) +ATd (θ)NT
2 + P (θ)

Z21 = −ATc (θ)NT
1 +N2Ad(θ) + P (θ)

Z22 = −N2Ac(θ)A
T
d (θ)NT

2 +

p∑
k=1

Pkρk

where N1, N2 ∈ Rn×n are auxiliary matrices.
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When one substitutes to the third part of (5.7) control algorithm (5.2) and the ob-

tained results with (5.3) to (5.7) after some manipulation we obtain (5.9). The proof is

completed.

5.4 Example

An illustrative example is taken from [9]. Consider a simple nonlinear plant with para-

meter varying coefficients

ẋ(t) = a(α)x(t) + b(α)u(t)

y(t) = x(t)
(5.11)

where α(t) ∈ R is an exogenous signal that changes the parameters of the plant as

follows

a(α) = −6− 2

π
arctan

( α
20

)
(5.12)

b(α) =
1

2
+

5

π
arctan

( α
20

)
(5.13)

Let the aim is to design gain-scheduled PID controller which will guarantee the closed-

loop stability and guaranteed cost for α ∈ 〈0, 100〉. We will demonstrate that with

our gain-scheduled controller design we can obtain for closed-loop system practically

identical behaviour for each working point. To be able to demonstrate this feature, let

us divide the working area to 2 sections (with 3 working points) so that in each area

where the plant parameter changes they are nearly linear (Fig. 5.1 – the green lines

indicates the chosen working points).
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Figure 5.1: Exogenous signal α(t)
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In these working points calculated transfer functions are:

Gs1|α=0 =
0.5

s+ 6
, Gs2|α=30 =

2.064

s+ 6.626

Gs3|α=100 =
2.686

s+ 6.874
,

(5.14)

Above transfer functions we transform to time domain to obtain scheduling model in the

form (5.1). The obtained model we extended for gain scheduled PID controller design.

The extended model is given as follows

A0 =

[
−6.4370 0

1 0

]
, A1 =

[
−0.3130 0

0 0

]

A2 =

[
−0.1240 0

0 0

]

B0 =

[
1.5930

0

]
, B1 =

[
0.7820

0

]

B2 =

[
0.3110

0

]
,

C =

[
1 0

0 1

]
, D = 0

Using Theorem 5.1 with weighting matrices Qi = qiI, q1 = q2 = q3 = 1× 10−4, R = rI,

r = 1, Si = siI, s1 = s2 = s3 = 1× 10−7 we obtain gain scheduled controller in the form

GrGS = Gr0 +Gr1θ1 +Gr2θ2 (5.15)

where

Gr0 =
0.3033s2 + 2.3036s+ 2.0949

s

Gr1 = −3.93× 10−6s2 + 8.86× 10−5s+ 3.13× 10−5

s

Gr2 = −0.0724s2 + 1.6323s+ 0.5773

s

Simulation results (Figs. 5.2, 5.3) confirm, that Theorem 5.1 holds, but we can see also

that with equal qi, si we don’t obtain identical behaviour in each working point.

We can change the weighting matrices in the 1. working point to get required per-

formance quality. An another gain-scheduled controller was obtained with weighting

matrices Qi = qiI, q1 = 1 × 10−2, q2 = q3 = 1 × 10−4 R = rI, r = 1, Si = siI,

s1 = s2 = s3 = 1× 10−7

GrGS = Gr0 +Gr1θ1 +Gr2θ2 (5.16)
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where

Gr0 =
0.5554s2 + 0.8513s+ 2.7286

s

Gr1 = −0.0064s2 + 0.0559s+ 0.0653

s

Gr2 = −0.0589s2 + 0.5173s+ 0.6048

s

Simulation results (Figs. 5.4, 5.5) confirm, that with variable weighting matrices we

can affect performance quality separately in each working points and we can tune the

system to the desired conditions.
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Figure 5.2: Simulation results with
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Figure 5.5: Simulation results with
GSC (5.16) – zoomed

With our gain-scheduled controller design approach we can tune also the change of states

with weighting matrices Si and we can influence to the overshot and oscillation and make

the system more slowly.

Let the system to be more slowly in the last working point (WP3: α = 100). An another

gain-scheduled controller was obtained with weighting matrices Qi = qiI, q1 = 1×10−2,

q2 = q3 = 1× 10−4, R = rI, r = 1, Si = siI, s1 = s2 = 1× 10−7, s3 = 1× 10−1

GrGS = Gr0 +Gr1θ1 +Gr2θ2 (5.17)
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where

Gr0 =
0.2161s2 − 0.1509s+ 0.7893

s

Gr1 = −0.0095s2 + 0.1084s+ 0.3770

s

Gr2 = −0.0088s2 + 0.1010s+ 0.3515

s

Simulation results are shown in Figs. 5.6, 5.7. Gain-scheduled controller obtained with

our controller design method is remains stable under slowly parameter changes too. This

is shown in Figs. 5.8, 5.9 with gain-scheduled controller (5.16).
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5.5 Conclusion

This paper addresses the problem to design gain-scheduled controller which guarantee

the closed-loop stability and performance for all scheduled parameter changes. The pro-

posed original procedure is based on Lyapunov theory of stability, notion of guaranteed

cost and BMI. Using original variable weighting matrices we can affect performance

quality separately in each working points and we can tune the system to the desired

condition through all parameter changes. Numerical example illustrate the effectiveness

of the proposed approach.
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6

Design of Robust Gain-Scheduled

PI Controllers (Paper 3)

Abstract

A novel approach to robust gain-scheduled controller design is presented. The proposed

design procedure is based on the robust stability condition developed for an uncertain

LPV system model introduced in this paper. The feasible design procedures are ob-

tained in the form of BMI or LMI. The obtained design results and their properties are

illustrated on simulation examples.

Keywords: Gain-scheduled controller, robust controller, parameter-dependent Lya-

punov function, quadratic gain-scheduled cost function, LPV systems.

6.1 Introduction

Gain scheduling belongs to the most popular approaches to linear parameter varying

systems (LPV) control design. However, in the absence of corresponding results, this

design provides no guarantees of robust stability, performance or even nominal stability

of the overall gain-scheduled control [1]. In many applications, a controller must accom-

modate a plant with changing dynamics, where the dynamics is strongly dependent on

the operating conditions. Developing a nonlinear plant model, the gain-scheduled con-

troller can be designed by the standard approach described in [2], [3] and [4] using linear

controller design techniques. In such cases, the designed gain-scheduled controller must

be able to stabilize and guarantee a reasonable performance for all operating conditions.

The question remains, what happens with a closed-loop system if the developed physical

nonlinear model is not precise enough? In such a case, frequent in applications, there is

a need for robust controller to cope with model uncertainty. Various robust controller

design methods for gain-scheduled plant are available in literature. In [5] the authors
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consider the case where uncertainties of LPV system are modeled by diagonal matrix

with norm bounded unknown parameters. The control objectives are internal stability

and disturbance attenuation in the case of a bounded induced L2 norm. The authors in

[6], address the gain scheduling of separately designed controllers to form a robust linear

parameter varying controller for an LPV plant. That is, the intent is to integrate a set of

separately designed local controllers into a gain-scheduled controller with maximal quad-

ratic H∞ performance using the LMI approach. A robust PID controller is designed in

[7] for the condensing boiler problem. The main feature of the proposed method is that

the stability, robustness margins and some performance specifications are guaranteed by

linear constraints in the Nyquist diagram. The condensing boiler is described by first

order models with time delay. A design of gain-scheduled PI controller is presented in

[1] considering that the system uncertainty is assumed to be the difference between the

nonlinear model (assuming to be an exact model) and the nominal linear model. Addi-

tionally, the input constraints problem is explicitly addressed in this paper.In the article

[8] presents the central finite-dimensional H∞ controller for linear time-varying systems

with unknown parameters, that is suboptimal for a given threshold with respect to a

modified Bolza-Meyer quadratic criterion including the attenuation control term with

the opposite sign. The paper [9] is concerned with the problem of the robust H∞ filter-

ing design for singular linear parameter varying systems with time variant delays. The

obtained results are proposed in terms of linear matrix inequality. In [10], the problem

of attenuation of sinusoidal disturbances with uncertain and arbitrarily time-varying fre-

quencies is solved by synthesis of LPV controllers using the L2 - gain method. A robust

gain-scheduled design procedure based on L2 controller synthesis method is proposed for

LPV systems in [11].The gap matrix approach to the design of a robust gain-scheduled

controller for LPV systems is studied in [12]. In [13], quadratic and bi-quadratic (affine)

stability approaches are used to design the gain-scheduled controller for each vertex of

the plant uncertainty box and the stability of the closed-loop system is verified by LMI.

In [14], a commercially available and vertically designed rotor bearing system is modeled

and controlled using an LMI and H∞ based gain-scheduled controller. The paper[15]

addresses the problem to gain scheduled controller design when scheduling parameters

are belong to the bounded uncertainties. The contribution of [16] is to use standard

results motivated by Youla-Kucera parametrization to propose a controller structure

and design approach that allows the gain scheduling of linear system such that a ro-

bustly stable nonlinear control system is achieved. In [17] provides a novel approach to

design continuous time varying H∞ gain-scheduled worst-case controllers for nonlinear

stochastic systems subject to partially known transition jump rates and actuator sat-

uration. The above short survey motivated us to study the following research problem

which has not been sufficiently solved yet. Design the robust gain-scheduled controller

which will guarantee:

• stability and robustness properties of the closed-loop system when the uncertain

plant parameters Π for all scheduled parameters θ ∈ Ωs and their rate θ̇ ∈ Ωt lie in

the given polytopic (convex) uncertainty box Ω, that is Π ∈ Ω, θ ∈ Ωs and θ̇ ∈ Ωt;
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• performance (guaranteed cost) for closed-loop system for all Π ∈ Ω, θ ∈ Ωs and

θ̇ ∈ Ωt;

• parameter dependent quadratic stability.

In this paper, we provide, to the authors’ best knowledge, an alternative novel approach

to the robust gain-scheduled control problem. The proposed LPV uncertainty model,

introduced in Section 6.2, is used to formulate a robust gain scheduling control problem.

The main result is presented in Section 6.3. The design procedure is based on the new

developed robust stability condition for the gain-scheduled controller. In Section 6.4 the

LMI gain-scheduled controller design is presented and in Section 6.5, numerical examples

illustrate the effectiveness of the proposed approaches.

6.2 Problem formulation and preliminaries

Consider a linear continuous time parameter varying (LPV) uncertain system

ẋ = Ā (ξ, θ)x+ B̄ (ξ, θ)u

y = Cx
(6.1)

where parameter varying system matrices are affine with respect to scheduled para-

meter θ

Ā (ξ, θ) = A0 (ξ) +
s∑
i=1

Ai (ξ) θi ∈ Rn×n

B̄ (ξ, θ) = B0 (ξ) +
s∑
i=1

Bi (ξ) θi ∈ Rn×m
(6.2)

x ∈ Rn, u ∈ Rm, y ∈ Rl denote the state, control input and controlled output, respect-

ively. Matrices Ai (ξ), Bi (ξ), i = 0, 1, . . . s belong to the convex and bounded set: a

polytope with N vertices that can be formally defined as

Ω :={Ai(ξ) ∈ Rn×n, Bi(ξ) ∈ Rn×m : {Ai(ξ), Bi(ξ)} :=

N∑
j=1

(Aij , Bij) ξj ,
N∑
j=1

ξj = 1, ξj ≥ 0}
(6.3)

where s is the number of scheduled parameters; ξj , j = 1, 2, . . . , N are constant but un-

known parameters respective to uncertainties in system matrices Ai(ξ), Bi(ξ); Aij , Bij ,

C are constant matrices of corresponding dimensions respective to uncertainty polytope

vertices; θ ∈ Rs is a vector of known constant or possible time-varying real gain schedul-

ing parameters. We assume that both lower and upper bounds are available for these

parameters’ value and variation rates. Specifically
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• Each parameter θi, i = 1, 2, . . . , s ranges between known extremal values

θi ∈ Ωs :=
{
θi ∈

〈
θi, θi

〉
, i = 1, 2, · · · s

}
. (6.4)

• The rate of variation θ̇i is well defined at all times and satisfies

θ̇i ∈ Ωt :=
{
θ̇i ∈

〈
θ̇i, θ̇i

〉
, i = 1, 2, . . . s

}
. (6.5)

Note that system (6.1) consists of two type vertices. The first one is due to the gain-

scheduled parameter θ with T = 2s vertices, θ – vertices and second set of vertices

are due to the system uncertainties, N vertices – ξ vertices. For the gain-scheduled I

part controller design the states of system (6.1) need to be extended in such a way that

the static output feedback control algorithm can provide proportional (P ) and integral

(I) parts of the designed PI robust controller. For more detail see [18]. Assume that

system (6.1) allows to design the PI controller with static output feedback. The following

problem is studied in this paper for the class of uncertain LPV systems (6.1).

Problem 6.1. Design a robust output feedback gain-scheduled PI controller with control

algorithm

u =

(
F0 +

s∑
i=1

Fiθi

)
y = F (θ)Cx (6.6)

such that the controller guarantees robust parameter dependent quadratic stability and

guaranteed cost with respect to the performance index (6.8) for the respective closed-

loop system (6.7) with convex uncertainty domain (6.3)

ẋ =
(
Ā(ξ, θ) + B̄(ξ, θ)F (θ)C

)
x = Ac(ξ, θ)x (6.7)

To assess the performance quality, a quadratic cost function known from LQ theory is

used

Jc =

∫ ∞
0

(
xTQx+ uTRu

)
dt =

∫ ∞
0

J(t)dt (6.8)

The respective notion of guaranteed cost is given in the next definition.

Definition 6.1. Consider system (6.1) and controller (6.6). If there exist a control law

u∗ and a positive scalar J∗ such that the respective closed-loop system (6.7) is stable

and the value of the closed-loop cost function (6.8) satisfies Jc ≤ J∗, then J∗ is said to

be guaranteed cost and u∗ is said to be the guaranteed cost control law for system (6.1).

Recall the well known result from LQ theory which will be used below to prove one of

the main results.

Lemma 6.1. [19] Consider the system (6.1) with control algorithm (6.6). Control al-

gorithm (6.6) is the guaranteed cost control law for the closed-loop system (6.7) if and
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only if there exists a parameter dependent Lyapunov function V (ξ, θ) such that the fol-

lowing condition holds

Be(ξ, θ) = min
u

(
dV (ξ, θ, u)

dt
+ J(t)

)
≤ 0 (6.9)

Uncertain system (6.1) with control algorithm (6.6) conforming to Lemma 6.1 is called

robust parameter dependent quadratically stable with guaranteed cost.

We proceed with the notion of multi-convexity of a scalar quadratic function, and its

qualities classified in the next lemma, [20].

Lemma 6.2. Consider a scalar quadratic function of θ ∈ Rs

f(θ) = α0 +
s∑
i=1

αiθi +
s∑
i=1

s∑
j>i

βijθiθj +
s∑
i=1

γiθ
2
i (6.10)

and assume that f(·) is multiconvex, that is ∂2f
∂θ2i

= 2γi ≥ 0, i = 1, 2, · · · s. Then f(·) is

negative in the hyper rectangle (6.4) if and only if it takes negative values at the corners

of (6.4), that is, if and only if f(θ) < 0 for all vertices of the set given by (6.4).

6.3 Main results

This section formulates the theoretical approach to the robust gain-scheduled controller

design for polytopic system (6.1) which ensures closed-loop system parameter dependent

quadratic stability and guaranteed cost (6.8), for all uncertain plant parameters Π ∈ Ω,

gain scheduling parameters θ ∈ Ωs and θ̇ ∈ Ωt. The main result on robust stability for

the gain-scheduled control system is given in the next theorem.

Theorem 6.1. The closed-loop system (6.7) is robust parameter dependent quadratically

stabilizable with guaranteed cost if there exist a positive definite matrix P (ξ, θ) ∈ Rn×n,

matrices N1, N2 ∈ Rn×n and gain-scheduled controller (6.6) such that

a)

L(ξ, θ) = M0(ξ) +
s∑
i=1

Mi(ξ)θi

+
s∑
i=1

s∑
j>i

Mij(ξ)θiθj +
s∑
i=1

Mii(ξ)θ
2
i < 0

(6.11)

b)

Mii(ξ) ≥ 0, (6.12)

i = 1, 2, . . . , s ∀θ ∈ Ωs, θ̇ ∈ Ωt,

N∑
j=1

ξj = 1, ξj ≥ 0
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where due to structure of system (6.1) we consider the parameter dependent Lyapunov

function in the form

P (ξ, θ) = P0(ξ) +

s∑
i=1

Pi(ξ)θi > 0 (6.13)

M0(ξ) =

[
M011 M012

M0
T
12 M022

]
, Mi(ξ) =

[
Mi11 Mi12

Mi
T
12 Mi22

]

Mii(ξ) =

[
Mii11 Mii12

Mii
T
12 Mii22

]
, Mij(ξ) =

[
Mij11 Mij12

Mij
T
12 Mij22

]
M011 = NT

1 +N1, M012 = −NT
1 A0c(ξ) + P0(ξ) +N2,

M022 = −NT
2 A0c(ξ)−A0c(ξ)

TN2

+Q+ CTF T0 RF0C +
s∑
i=1

Pi(ξ)θ̇i

A0c(ξ) = A0(ξ) +B0(ξ)F0C, Mi11 = 0

Mi12 = −NT
1 Aic(ξ) + Pi(ξ)

Mi22 = −NT
2 Aic(ξ)−Aic(ξ)TN2

+ CT
(
F T0 RFi + F Ti RF0

)
C

Aic(ξ) = Ai(ξ) + (B0(ξ)Fi +Bi(ξ)F0)C

Mii11 = 0, Mii12 = −N1Aiic(ξ)

Mii22 = −NT
2 Aiic(ξ)−Aiic(ξ)TN2 + CTF Ti RFiC

Aiic(ξ) = Bi(ξ)FiC, Mij11 = 0, Mij12 = −NT
1 Aijc(ξ)

Mij22 = −NT
2 Aijc(ξ)−Aijc(ξ)TN2

+ CT
(
F Ti RFj + F Tj RFi

)
C

Aijc(ξ) = (Bi(ξ)Fj +Bj(ξ)Fi)C i 6= j

Proof. The proof is based on Lemma 6.1 and 6.2. For concrete structure of V (ξ, θ) =

xTP (ξ, θ)x, Theorem 6.1 reduces to sufficient condition. To prove Theorem 6.1 it is

sufficient to prove that inequalities (6.11) and (6.12) imply that (6.9) holds for parameter

dependent Lyapunov function (6.13). The first time derivative of the Lyapunov function

V (ξ, θ) = xTP (ξ, θ)x is

dV (ξ, θ)

dt
=
[
ẋT xT

] [ 0 P (ξ, θ)

P (ξ, θ) P (ξ, θ̇)

][
ẋ

x

]
(6.14)

where

P (ξ, θ̇) =
s∑
i=1

Pi(ξ)θ̇i
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Let us now substitute (6.14) and J(t) from (6.8) to (6.9) and summarize the left hand

side of the obtained inequality with the following equality

[N1ẋ+N2x]T [ẋ−Ac(ξ, θ)x]

+ [ẋ−Ac(ξ, θ)x]T [N1ẋ+N2x] = 0
(6.15)

after some manipulation one obtains

Be(ξ, θ) =
[
ẋT xT

] [Be11 Be12

Be21 Be22

][
ẋ

x

]
(6.16)

where

Be11 = NT
1 +N1

Be12 = −NT
1 Ac(ξ, θ) +N2 + P (ξ, θ)

Be21 = P (ξ, θ) +NT
2 −Ac(ξ, θ)TN1

Be22 = W (ξ, θ)

W (ξ, θ) = −NT
2 Ac(ξ, θ)−Ac(ξ, θ)TN2 + P (ξ, θ̇) +Q

+ CTF T0 RF0C +
s∑
i=1

CT
(
F T0 RFi + F Ti RF0

)
Cθi

+
s∑
i=1

s∑
j=1

CTF Ti RFjCθiθj

Now, to show that inequalities (6.11) and (6.12) imply (6.9), it is enough to prove that

Be(ξ, θ) ≤ 0 if (6.11) and (6.12) hold. To prove the latter, we use the multiconvexity

quality of Be(ξ, θ). Recall that in (6.16) Ac(ξ, θ) can be rewritten as follows

Ac(ξ, θ) = A0(ξ) +B0(ξ)F0C

+

s∑
i=1

[Ai(ξ) + (B0(ξ)Fi +Bi(ξ)F0)C] θi

+

s∑
i=1

s∑
j=1

Bi(ξ)FjCθiθj

(6.17)

Substituting (6.17) to (6.16) and multiplying from the left and right hand sides with non

zero vector z one obtains a scalar quadratic function (6.10). Due to Lemma 6.2, this

scalar quadratic function is multiconvex and negative if (6.11) and (6.12) hold, which

proves the sufficient robust stability conditions of Theorem 6.1.

Note that (6.11) and (6.12) are linear with respect to uncertain parameters ξj , j =

1, 2, . . . , N therefore the above inequalities have to hold for all j = 1, 2, . . . , N respective

to uncertainty domain vertices.

Multiplying entries of (6.11) by ∑s
i=1 θi
θm

= 1 (6.18)
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where θm ∈ 〈θm, θm〉 assuming that θm > 0. After small manipulation one obtains

s∑
i=1

s∑
j=1

(Mo(ξ) +Mi(ξ)θm +Mij(ξ)θ
2
m)θiθj < 0 (6.19)

From (6.19) and Lemma 6.2 the alternative robust stability conditions follow in the next

Lemma.

Lemma 6.3. The closed-loop system (6.7) is robust parameter dependent quadratically

stable with guaranteed cost if there exist a positive definite matrix P (ξ, θ), matrices N1,

N2 and gain-scheduled controller (6.6) such that for all θ, ξ- vertices the following robust

stability conditions hold

2Mo(ξ) + (Mi(ξ) +Mj(ξ))θm + (Mij(ξ) +Mji(ξ))θ
2
m < 0

2Mo(ξ) + (Mi(ξ) +Mj(ξ))θm + (Mij(ξ) +Mji(ξ))θ2
m < 0 (6.20)

M ij = Mij(ξ) +Mji(ξ) ≥ 0; i = 1, 2, . . . , s; j = i, i+ 1 . . . , s

Note that in (6.20) the number of θ-vertices reduces to T = 2, θm = θm or θm = θm.

Note that (6.11), (6.12) and (6.20) are linear with respect to uncertain parameters

ξj , j = 1, 2, . . . , N therefore the above inequalities have to hold for all j = 1, 2, . . . , N

respective to uncertainty domain vertices.

Remark 6.1. [20] One can reduce the conservatism of Theorem 6.1 or Lemma 6.3 by

relaxing the multi-convexity requirement (6.12). Specifically, let N i, i = 1, 2, . . . , s be

non-negative symmetric matrices and define the augmented function to (6.11)

Lu(ξ, θ) = L(ξ, θ) +

s∑
i=1

N iθ
2
i ≥ L(ξ, θ) (6.21)

Quadratic form zTLu(ξ, θ)z is a multiconvex function of θ if and only if Mii(ξ) +N i ≥ 0

for i = 1, 2, . . . , s. This leads to an immediate extension of Theorem 6.1 or Lemma 6.3

where (6.11) and (6.12) are replaced by

Lu(ξ, θ) < 0 ∀ θ ∈ Ωs, θ̇ ∈ Ωt,

ξj , j = 1, 2, . . . , N

Mii(ξ) +N i ≥ 0 i = 1, 2, . . . , s,

ξj , j = 1, 2, . . . , N

N i ≥ 0 i = 1, 2, . . . , s

(6.22)

6.4 LMI gain-scheduled robust controller design

In this paragraph the obtained theoretical results aiming at designing a robust gain-

scheduled PI controller (6.11 and 6.20) using BMI approach will be transformed to an
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LMI design procedure. At first the gain-scheduled plant (6.1) with variable parameter

θ will be transformed to a set of equivalent systems with constant parameters. For

the LMI design procedure the modified robust elimination lemma [21] and linearization

approach will be adopted [22].

6.4.1 Equivalent gain-scheduled system

Substituting Mo(ξ), Mi(ξ), Mij(ξ) to robust stability condition (6.20) after manipulation

one obtains the following robust stability conditions

W (ξ) = {wij(ξ)}2×2 < 0, M ij ≥ 0 (6.23)

where

w11(ξ) = 2(NT
1 +N1)

w12(ξ) = 2(−NT
1 A0c(ξ) + P0(ξ) +N2)

−NT
1 (Aic(ξ) +Ajc(ξ))θm + (Pi(ξ) + Pj(ξ))θm

−NT
1 (Aijc(ξ) +Ajic(ξ))θ

2
m

w22(ξ) = 2(−NT
2 A0c(ξ)−A0c(ξ)

TN2)

−NT
2 (Aic(ξ) +Ajc(ξ))θm

− (Aic(ξ)
T +Ajc(ξ)

T )N2θm

−NT
2 (Aijc(ξ) +Ajic(ξ))θ

2
m

− (Aijc(ξ)
T +Ajic(ξ)

T )N2θ
2
m + Perij

for i = 1, 2, . . . , s; j = i, i+ 1, . . . , s and θ, ξ-vertices. Rewrite w12(ξ) as follows

w12(ξ) = NT
1 [Ao(ξ) +Bo(ξ)FoC

+ (Ai(ξ) +Bo(ξ)Fi +Bi(ξ)F0)C

+Aj(ξ) + (B0(ξ)Fj +Bj(ξ)F0)C0.5θm]

−NT
1 (Bi(ξ)Fj +Bj(ξ)Fi)Cθ

2
m

+ Po(ξ)+)0.5(Pi(ξ) + Pj(ξ)) +N2

(6.24)

From (6.24) we obtain the following set of gain-scheduled equivalent systems

Aeij(ξ) = A0(ξ) + 0.5(Ai(ξ) +Aj(ξ))

Be
ij(ξ) = [b1ij b2ij b3ij ]

(6.25)

where

b1ij = B0(ξ) + 0.5(Bi(ξ) +Bj(ξ))

b2ij = (B0(ξ) +Bj(ξ)θm)0.5θm

b3ij = (B0(ξ) +Bi(ξ)θm)0.5θm
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Equivalent gain-scheduled feedback matrix

(F eij)
T = [F T0 F

T
i F

T
j ]

and equivalent closed loop system

Aecij(ξ) = Aeij(ξ) +Be
ij(ξ)F

e
ijC (6.26)

Equivalent Lyapunov matrix

P eij(ξ) = P0(ξ) + 0.5(Pi(ξ) + Pj(ξ)) (6.27)

i = 1, 2, . . . , s; j = i, i+ 1, . . . , s

On the base of equivalent system condition inequalities (6.23) read as follows

w11(ξ) = NT
1 +N1; M ij ≥ 0

w12(ξ) = −NT
1 A

e
cij(ξ) +N2 + P eij(ξ)

w22(ξ) = −NT
2 A

e
cij(ξ)−Aecij(ξ)TN2 + Perij

(6.28)

To make a simple linearization process let us choose the performance in (6.28) as follows

Perij =Q+ CT (F eij)
T R̄F eijC =

Q+ CT (F T0 RF0 + F Ti RFi + F Tj RFj)C
(6.29)

where R̄ = diag{R} ∈ R3m×3m.

6.4.2 LMI robust controller design procedure

Recall the main results of the robust elimination lemma [21]

Lemma 6.4. Conditions (6.23) and (6.28) hold if for ξ-vertices there exits γ > 0 such

that for the set of equivalent systems the following conditions hold

• Matrix P eijk +NT
2 − γAecijk is non singular and

•

Aecijk
TP eijk + P eijkA

e
cijk + Perij < 0

Perij −NT
2 A

e
cijk −AecijkTN2 + γ2Aecijk

TAecijk

− (P eijk +NT
2 )(−2γ + 1)−1I(P eijk +NT

2 )T < 0
(6.30)

where i = 1, 2, . . . , s; j = i, i+ 1, . . . , s; k = 1, 2, . . . , N

Because of sufficient robust stability conditions the use of Lemma 6.4 may be conser-

vative. For decreasing the solution conservativeness the following LMI robust controller
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design procedure is adopted

Gain-scheduled robust controller LMI design procedure.

1. Calculate the gain-scheduled matrices F0, Fi, i = 1, 2, . . . , s from three LMI in-

equalities

(Aecijk)
TP eijk + P eijkA

e
cijk

+Q+ CT (F eij)
T R̄F eijC < 0

−NT
2 A

e
cijk − (Aecijk)

TN2

+Q+ CT (F eij)
T R̄F eijC +Q1 < 0

(6.31)

M ij ≥ 0 (6.32)

where

Q1 = −(P eijk +NT
2 )(−2γ + 1)−1I(P eijk +NT

2 )T

+ γ2(Aecijk)
TAecijk ≥ 0

To obtain inequalities (6.31) and (6.32) to the LMI, the standard linearization

approach can be used [22], see Appendix. Note that for the iteration procedure

we reduce matrix Q1 (6.31) to a matrix with constant entries and for the first step

of the iteration procedure we choose Q1 = 0 .

2. When gain-scheduled matrices F0, F1, . . . , Fs are known, check robust stability by

(6.23) or (6.28). The above conditions for robust stability analysis reduce to LMI.

3. If the closed loop system is not robust stable ((6.23) or (6.28) are not feasible),

increase q1, Q1 = q1I > 0 and repeat the solution from the first step. In the step

2 the original value of matrix Q1 is used.

4. If there is no solution with proposed algorithm the robust elimination lemma with

two step algorithm fails.

Remark 6.2. (Theorem 6.1, Lemma 6.3), LMI design procedure can be used also for

a quadratic stability test, where Lyapunov function matrix (matrices) are either not

dependent on parameter ξ or parameter θ or both, as listed below.

1. Quadratic stability with respect to model parameter variation. For this case we

have P (θ) = P0 +
∑s

i=1 Piθi. This Lyapunov function should withstand an arbit-

rarily fast model parameter variation in the convex set (6.3).

2. Quadratic stability with respect to gain-scheduled parameter θ. For this case

Pi → 0, i = 1, 2, . . . , s and the Lyapunov matrix is P (ξ, θ) = P0(ξ). This Lyapunov

function can withstand arbitrarily fast θ parameter variations.

3. Quadratic stability with respect to both ξ and θ parameters. The Lyapunov matrix

for this case is P (ξ, θ) = P0 and it withstands arbitrarily fast model and gain-

scheduled parameter variations.
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Remark 6.3. When one takes into account parameter θ variations in (6.11) or (6.22),

the respective number of inequality constraints grows exponentially with the number of

s. For this case it is preferable to use a more conservative approach, quadratic stability

variant of Theorem 6.1, Lemma 6.3 considering Remark 6.2.

6.5 Examples

In this section, the robust gain-scheduled controller design procedure described in Sec-

tions 6.3 and 6.4, based on a solution of BMI matrix inequalities (6.11), (6.12) and LMI

matrix inequalities (6.31) and (6.32) is illustrated on several examples. Note to obtain

inequalities (6.31) and (6.32) to the LMI form the standard linearization approach need

to be used [22]. In each example, for simulation we have used the nominal plant model.

The results obtained using parameter dependent quadratic stability are compared with

the results for different quadratic stability variants (Remark 6.2). The following 4 vari-

ants of the Lyapunov function are used in the design procedure to study the differences

between the qualities of the designed controllers in these examples.

• DP1 : Quadratic stability with respect to uncertain model parameter variation.

For this case, the Lyapunov matrix is dependent only on θ and it is in the form

P (θ) = P0 +
s∑
i=1

Piθi (6.33)

• DP2 : Parameter dependent quadratic stability. The Lyapunov matrix depends on

both ξ and θ and is given as

P (ξ, θ) = P0(ξ) +
s∑
i=1

Pi(ξ)θi (6.34)

where

Pj(ξ) =

N∑
i=1

Pjiξi j = 0, 1, 2, . . . s,

N∑
i=1

ξi = 1

• DP3 : Quadratic stability with respect to gain-scheduled parameters. For this case

the Lyapunov matrix is dependent only on ξ

P (ξ) =

N∑
i=1

Piξi (6.35)

• DP4 : Quadratic stability with respect to both gain-scheduled and uncertain para-

meters. The Lyapunov matrix is P0, independent of ξ and θ.

The data for the first example is generated by a computer, the second example is bor-

rowed from [23], where its parameters are slightly modified.
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Example 6.1. BMI solution. This example illustrates the design of a robust decent-

ralized gain-scheduled PI controller. Parameters of gain-scheduled system (6.1) are as

follows: number of scheduling parameters s = 1, number of uncertainty domain vertices

N = 2, system order n = 5, input number m = 2, output number l = 2. The augmented

system matrices for PI controller [18] are:

A01 =


−1 0.4 0.5 0 0
0.5 −2 0.7 0 0
1 1 −2.5 0 0
1 0 0 0 0
0 0 1 0 0

 , B01 =


1 0.2

0.1 0.3
0.1 2
0 0
0 0

 , C =

 1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



A02 =


−1.5 0.44 0.55 0 0
0.52 −2.2 0.97 0 0
1.4 0.91 −2.75 0 0
1 0 0 0 0
0 0 1 0 0

 , B02 =


1.4 0.2
0.11 0.23
0.12 2.2

0 0
0 0



A11 =


−0.19 0.14 0.15 0 0
0.15 −0.2 0.17 0 0
0.11 0.14 −0.285 0 0

0 0 0 0 0
0 0 0 0 0

 , B11 =


0.14 0.05
0.021 0.03
0.02 0.2
00 0
0 0



A12 =


−0.29 0.1 0.175 0 0
0.175 −0.12 0.19 0 0
0.15 0.18 −0.25 0 0

0 0 0 0 0
0 0 0 0 0

 , B12 =


0.1 0.03
0.01 0.023
0.015 0.19

0 0
0 0



For parameters R = rIr, r = 1, Q = qIq, q = 10−4, r0 = 100 (P ≤ r0I), θ1 ∈ 〈−1, 1〉
on the base of Theorem 6.1 we have obtained the following PI robust decentralized

controller

DP1 :

F =

[ −0.989s−0.722
s−1.234s−1.257
s

]
+

[ −0.527s+0.002
s

4.51+0.611
s

]
10−4θ1

The closed-loop maximal eigenvalue for θ1 = 0 is λm = −0.330

DP2 :

F =

[ −6.7115s−0.1908
s−0.2214s−1.2565
s

]
+

[
6.7701s−0.0706

s−0.3869s+0.0024
s

]
θ1

The closed-loop maximal eigenvalue for θ1 = 0 is λm = −0.024

DP3 :

F =

[ −2.037s−0.373
s−1.794s−0.677
s

]
+

[
0.6981s+0.2925

s
0.6093s+0.1641

s

]
10−4θ1

The closed-loop maximal eigenvalue for θ1 = 0 is λm = −0.115

DP4 :

F =

[
0.341s−0.02

s−0.578s−1.702
s

]
+

[ −0.012s+0.0001
s−0.141s+0.0998
s

]
10−3θ1

The closed-loop maximal eigenvalue for θ1 = 0 is λm = −0.020.
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To compare the obtained different dynamic properties of the closed-loop system for

respective variants of parameter dependent and quadratic stability (DP1 – DP4 ), the

following experiments are proposed. Let θ1 = A sinωt, (A = 1), then the outputs of

the closed-loop system oscillate with amplitude Ai, i = 1, 2, . . . , l. We have proposed a

dynamic property coefficient (DPC) of the closed-loop system defined by λθ =
∑l

i=1 Ai/l
A .

Using this DPC coefficient, it can be said that the closed-loop system with smaller DPC

better attenuates parameter changes. For demonstration of the proposed experiment,

Fig. 6.1 shows the DPC versus ω of the closed-loop system for all cases of DPi, i =

1, 2, 3, 4. For simulation we have used the nominal plant model, e.g. nominal system

model is calculated as A0 = (A01 + A02)/2. Analogically to DPC coefficient above, the

0 1 2 3 4 5
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5 · 10−2

0.1

0.15

Frequency [rad/sec]

λ
θ

λθ(ω)

DP1
DP2
DP3
DP4

Figure 6.1: λθ(ω) at θ1 = θ1 sinωt

second dynamic coefficient λξ is defined to assess the influence of uncertainty parameter

changes upon the attenuation of the closed-loop system. In the second experiment, the

first element (1, 1) of the system matrix has been changed as A(1, 1) = −1.25+0.25 sinωt.

The second dynamic property coefficient λξ is given in Fig. 6.2
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λ
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λξ(ω)

DP1
DP2
DP3
DP4

Figure 6.2: λξ(ω) at θ1 = 0, Ano(1, 1) = −1.25 + 0.25 sinωt

Example 6.2. BMI solution. For robust controller design the modified parameters of

[23] are as follows s = 1, N = 2, order of system n = 4, m = 1, l = 1. System matrices
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for PI controller design are:

A01 =


−4 3 5 0

0 7 −5 0

0.1 −2 −3 0

1 1 0 0

 , A02 =


−4.4 3.3 5.5 0

0 7.7 −5.5 0

0.1 −1.8 −3.3 0

1 1 0 0



A11 =


1 0 1 0

2 0 −5 0

2 5 1.5 0

0 0 0 0

 , A12 =


0.8 0 0.8 0

1.8 0 −4.6 0

1.8 4.5 1.75 0

0 0 0 0


BT

01 =
[

0 16 −10 0
]
, BT

02 =
[

0 13.4 −12 0
]

BT
11 =

[
1 −5 3.5 0

]
, BT

12 =
[

0.8 −4.5 3.15 0
]

C =

[
1 1 0 0

0 0 0 1

]

For parameters r = 1, q = 10−6, θ ∈ 〈−1, 1〉, ro = 106 the following PI controllers have

been obtained

DP1 :

F = −3.7699− 1.9871/s+ (−0.1902− 0.1375/s)× 10−7θ1

The closed-loop maximal eigenvalue for θ1 = 0 is λm = −0.542

DP2 :

F = −2.0863− 0.6452/s+ (−0.9418− 0.0267/s)× 10−7θ1

The closed-loop maximal eigenvalue for θ1 = 0 is λm = −0.327

DP3 : There are no results. PENBMI failed.

DP4 :

F = −2.6039− 1.4741/s+ (−0.2105− 0.1827/s)× 10−10θ1

The closed-loop maximal eigenvalue for θ1 = 0 is λm = −0.589

The DPC1 versus ω given in Fig. 6.3 and Fig. 6.4 show the dynamic behaviour of the

closed-loop system for the case of DP1.
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Figure 6.3: λθ(ω) at θ1 = θ1 sinωt
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Figure 6.4: Dynamic behaviour of the closed-loop system for case DP1

Example 6.3. BMI solution. Parameters of gain-scheduled system (6.1) are as follows;

s = 2, N = 2, n = 3, m = 1, l = 1. System matrices for PI controller design are:

A01 =

−0.0725 4.1667 0

0.001 −0.0735 0

0 0.001 0

 , A02 =

−0.0725 3.8 0

0.0007 −0.0737 0

0 0.001 0

× 103

A11 =

 0 0 0

0 −5.5 0

0 0 0

 , A12 =

 0 0 0

0 −6 0

0 0 0

 , A21 =

 0 833.333 0

0 1.5 0

0 0 0


A22 =

 0 800 0

0 −1.7 0

0 0 0

 , BT
01 =

[
8708.3 0 0

]
, BT

02 =
[

8500 0 0
]

BT
11 =

[
−805 0 0

]
, BT

12 =
[
−835 0 0

]
, BT

21 =
[

2766.7 0 0
]

BT
22 =

[
2500 0 0

]
, C =

[
0 1 0

0 0 1

]

For parameters r = 1, q = 10−4. ro = 1010, θ1, θ2 ∈ 〈−1, 1〉 the following PI controllers

have been obtained

DP1 :

F = −0.4108− 0.0028/s+ (0.2914− 0.0024/s)× 10−12θ1

+ (−0.9079 + 0.0028/s)× 10−13θ2

Closed-loop maximal eigenvalue for θ1 = 0 is λm = −0.003

DP2 :

F = −0.4095− 0.0035/s+ (0.3865− 0.0051/s)× 10−12θ1

+ (−0.1195 + 0.0016/s)× 10−12θ2
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Closed-loop maximal eigenvalue for θ1 = 0 is λm = −0.004

DP3 : There are no results. PENBMI failed.

DP4 : There are no results. PENBMI failed.

The DPC1 versus ω is given in Fig. 6.5 and dynamic behaviour of closed-loop system

for DP2 is given in Fig. 6.6
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Figure 6.5: λθ(ω) at θ1 = θ1 sinωt, θ2 = θ2 sin(ωt+ 90)
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Figure 6.6: Dynamic behaviour of closed-loop system for case DP2

Example 6.4. LMI solution. The augmented gain-scheduled plant model for an LMI

PI robust gain-scheduled controller design are given in Example 6.1. For parameters
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r = 1, q = 10−5, ro = 30, θm ∈ 〈10−5, 1〉 on the base of the Gain-scheduled robust

LMI design procedure (GSLMIDP) proposed in this paper we have obtained a feasible

solution for parameter dependent quadratic stability (the number of Lyapunov functions

is N(s+ 1)) the following robust PI controller

F =

[
−0.1148s−1.5886

s
0.257s−1.0515

s

]
+

[
(−0.0921s+0.1068)

s
(−0.0918s+0.0908)

s

]
θ1

The closed-loop maximal eigenvalue for a polytopic system, when θ1 = 0, is λm =

−0.1825. The above results have been obtained in the first step of GSLMIDP after

50 iterations. Dynamic properties of the proposed robust gain-scheduled controller are

given in Fig. 6.7.
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Figure 6.7: Dynamic behaviour of closed-loop system

6.6 Conclusion

A novel robust gain-scheduled PI controller design approach has been proposed based

on a robust gain-scheduled controller design for an uncertain gain-scheduled polytopic

plant model or robust controller design for a uncertain polytopic systems with time vary-

ing uncertainty. The obtained results, illustrated on examples, show the applicability

of the designed robust gain-scheduled controller and its ability to cope with polytopic

model uncertainties. Several forms of parameter dependent/quadratic Lyapunov func-

tions are presented and tested by simulations. Though the proposed robust controller

design approach with parameter dependent Lyapunov function does not consider quick

changes of parameters (either uncertainty or gain scheduling), simulation results prove

the potential ability of the designed closed-loop to withstand also these changes. The

obtained results are in the form of BMI and LMI approaches. The proposed approach

contributes to the design tools for robust gain-scheduled controllers.
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6.7 Appendix

6.7.1 Linearization of (6.32)

M ij = Mijk +Mjik =

[
0 NT

1 (Aijkc +Ajikc)

∗ −NT
2 (Aijkc +Ajikc)− (Aijkc +Ajikc)

TN2

]

Due to the structure of M ij , M ij ≥ 0 hold if

Go = −NT
2 (BikFj +BjkFi)C − CT (BikFj +BjkFi)

TN2 ≥ 0

Rewrite above inequality to the following form

Go =

[
N2TN2 + (BikFjC +BjkFiC)T (BikFjC +BjkFiC) ∗

N2 +BikFjC +BjkFiC I

]

Term Go(1, 1) could be linearized known way.

6.7.2 Linearization of (6.31)

Rewrite the first inequality of (6.31) as follows

ATc P + PAc +Q+ CTF TRFC < 0

where Ac = A+BFC.

Let G = FC +R−1BTP . From GTRG one obtain

CTF TBTP + PBFC = GTRG− CTF TRFC
− PBR−1BTP

Substituting above results to first inequality

ATP + PA+Q− PBR−1BTP < 0

Linearization of nonlinear terms PBR−1BTP gives

lin(−PBR−1BTP ) = −PBR−1BTU − UBR−1BTP

+ UBR−1BTU
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In LMI iterative procedure for each step one put U = P . The same linearization ap-

proach can be used to the second inequality of (6.31).
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7

Robust Gain-scheduled PID Controller

Design for uncertain LPV systems

(Paper 4)

Abstract

A novel methodology is proposed for robust gain-scheduled PID controller design for

uncertain LPV systems. The proposed design procedure is based on the parameter-

dependent quadratic stability approach. A new uncertain LPV system model has been

introduced in this paper. To access the performance quality the approach of a parameter

varying guaranteed cost is used which allowed to reach for different working points

desired performance. Numerical examples show the benefit of the proposed method.

Keywords: LPV systems, Gain-scheduled controller, Robust controller, Parameter-

dependent Lyapunov function, Quadratic gain-scheduled cost function, PID controller.

7.1 Introduction

In real applications a controller must accommodate a plant with changing dynamics.

Therefore, controllers based on these models have to be robust in the presence of plant

model uncertainty. A practical approach involves scheduling in a family of local con-

trollers in response to the changing plant dynamics [1]. A proposed family of local

controllers is implemented using the gain scheduling approach. The above mentioned

gain-scheduled designs are guided by two heuristic rules [2]:

– the scheduling variable should vary slowly, and

– the scheduling variable should capture the plants nonlinearities.
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In such cases, the designed gain-scheduled controller should be able to stabilize and

guarantee a reasonable performance for all operating conditions. The question remains

what happens with a closed-loop system if the developed physical nonlinear model or

the model obtained through practical identification is not enough precise? In such a

case, frequent in applications, there is a need for robust controller to cope with plant

model uncertainty.

Various robust controller design methods for gain-scheduled uncertain plant are avail-

able in literature. Robust gain-scheduled controllers design to LPV system can be found

in [1], where the authors addressed the problem of interpolating in a set of LTI control-

lers in order to form a gain-scheduled controller with optimal H∞ performance. The

set of admissible interpolated controllers are framed in terms of the robust controller

interpolation criteria. For a special uncertain dynamical system, the robust state feed-

back stabilization problem in the gain scheduling can be found in [3]. In this paper it

is shown that a possible advantage of the online measurement of the scheduling para-

meters is that this always allows linear compensators, whose implementation can be

easier than that of nonlinear ones. Design of robust gain-scheduled PI controllers for

nonlinear SISO process can be found in [2]. The model uncertainty is assumed to be the

difference between the nonlinear model and the linear one. In the paper [4] an input-

output approach to the gain-scheduled design of nonlinear controllers is presented. A

controller formulation inspired by the Youla-Kucera parametrization to propose a con-

troller structure and design approach that allow the gain scheduling of linear control

designs such that a robustly stable nonlinear closed-loop control system is achieved. A

robust PID controller is designed in [5].The main feature of the proposed method is that

the stability, robustness margin and some performance specification are guaranteed by

linear constraints in the Nyquist diagram. The condensing boiler is described by the

first order model with a time delay in [6], the problem of attenuation of sinusoidal dis-

turbances with uncertain and arbitrarily time-varying frequencies is solved by synthesis

of LPV controller using the L2 gain method. In [7] the quadratic stability approach is

used to design the gain-scheduled controller for each vertex of a plant uncertainty box

and the closed-loop system stability is verified by LMI. Other alternative approaches to

gain-scheduled controller design can be found in [8], [9], [10], [11], [12], [13], [14], [15],

[16], [17]. A survey of the gain-scheduled controller design is given in excellent papers

[18] and [19].

The above short survey implies that in the references there is no systematic procedure

for designing a robust PID gain-scheduled controller. This observation motivated us

to solve the following research problem: design a PID robust gain-scheduled controller

which should guarantee

– stability and robustness properties of a closed-loop system for all scheduled para-

meters θ ∈ Ωs and their rate θ̇i ∈ Ωt, when the uncertain plant parameters π lie

in the given polytopic uncertainty box Ω, that is π ∈ Ω, θ ∈ Ωs, θ̇ ∈ Ωt,

– for the closed-loop system ensure for all π ∈ Ω, θ ∈ Ωs and θ̇ ∈ Ωt guaranteed

gain-scheduled performance and parameter dependent quadratic stability.

86



7.2. Problem formulation and preliminaries

In this paper the new PID robust gain-scheduled controller design procedure is given.

The paper is organized as follows. Section 7.2 includes problem formulation of robust

PID gain-scheduled controllers design for the original plant uncertainty model and new

performance criterion. In Section 7.3, sufficient robust stability LMI conditions for

the structured gain-scheduled controller are given. Respective conditions for robust

controller synthesis are in BMI form. In Section 7.4, the results are illustrated on

examples to design a PID robust gain-scheduled controller. The final Section 7.5 brings a

conclusion on the obtained results and possible directions in the gain-scheduled controller

design field.

Hereafter, the following notational convention will be adopted. Given a symmetric mat-

rix P = P T ∈ Rn×n, the inequality P > 0 (P ≥ 0) denotes the positive definiteness

(semidefiniteness) matrix. Symbol ∗ denotes a block that is transposed and complex con-

jugated to the respective symmetrically placed one. Matrices, if not explicitly stated, are

assumed to have compatible dimensions. I denotes the identity matrix of corresponding

dimensions.

7.2 Problem formulation and preliminaries

Consider a continuous-time linear parameter varying (LPV) uncertain system in the

form

ẋ = A(ξ, θ)x+B(ξ, θ)u

y = Cx

ẏd = Cdẋ

(7.1)

where linear parameter varying matrices

A(ξ, θ) = A0(ξ) +

s∑
i=1

Ai(ξ)θi ∈ Rn×n

B(ξ, θ) = B0(ξ) +

s∑
i=1

Bi(ξ)θi ∈ Rn×m
(7.2)

x ∈ Rn, u ∈ Rm, y ∈ Rl denote the state, control input and controlled output, respect-

ively. Matrices Ai(ξ), Bi(ξ), i = 0, 1, 2, . . . , s belong to the convex set: a polytope with

N vertices that can be formally defined as

Ω =

Ai(ξ), Bi(ξ) =

N∑
j=1

(Aij , Bij) ξj

 ,

i = 0, 1, 2, . . . , s,

N∑
j=1

ξj = 1, ξj ≥ 0

(7.3)
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where s is the number of scheduled parameters; ξj , j = 1, 2, . . . , N are constant or

possibly time varying but unknown parameters; matrices Aij , Bij , C, Cd are constant

matrices of corresponding dimensions, where Cd is the output matrix for D part of

the controller. θ ∈ Rs is a vector of known (measurable) constant or possibly time-

varying scheduled parameters. Assume that both lower and upper bounds are available.

Specifically

1. Each parameter θi, i = 1, 2, . . . , s ranges between known extremal values

θ ∈ Ωs =
{
θ ∈ Rs : θi ∈ 〈θi, θi〉, i = 1, 2, . . . , s

}
(7.4)

2. The rate of variation θ̇i is well defined at all times and satisfies

θ̇ ∈ Ωt =
{
θ̇i ∈ Rs : θ̇i ∈ 〈θ̇i, θ̇i〉, i = 1, 2, . . . , s

}
(7.5)

Note that system (7.1), (7.2), (7.3) consists of two type of vertices. The first one is due

to the gain-scheduled parameters θ with T = 2s vertices – θ vertices, and the second

set of vertices are due to uncertainties of the system – N , ξ vertices. For robust gain-

scheduled ”I” part controller design the states of system (7.1) need to be extended in

such a way that a static output feedback control algorithm can provide proportional (P)

and integral (I) parts of the designed controller. For more details see [20]. Assume that

system (7.1) allows PI controller design with a static output feedback.

To access the system performance, we consider an original scheduling quadratic cost

function

J =

∫ ∞
0

J(t)dt =

∫ ∞
0

(
xTQ(θ)x+ uTRu+ ẋTS(θ)ẋ

)
dt (7.6)

where

Q(θ) = Q0 +
s∑
i=1

Qiθi, S(θ) = S0 +
s∑
i=1

Siθi

The feedback control law is considered in the form

u = F (θ)y + Fd(θ)ẏd (7.7)

where

F (θ) = F0 +
s∑
i=1

Fiθi, Fd(θ) = Fd0 +
s∑
i=1

Fdiθi

Matrices Fi, Fdi, i = 0, 1, 2, . . . , s are the static output PI part and the output deriv-

ative feedback gain-scheduled controller. The structure of the above matrices can be

prescribed.

The respective closed-loop system is then

Md(ξ, θ)ẋ = Ac(ξ, θ)x (7.8)
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where

Md(ξ, θ) = I −B(ξ, θ)Fd(θ)Cd

Ac(ξ, θ) = A(ξ, θ) +B(ξ, θ)F (θ)C

Let as recall some results about an optimal control of time varying systems [21].

Lemma 7.1. Let there exists a scalar positive definite function V (x, t) such that

limt→∞ V (x, t) = 0 which satisfies

min
u∈Ωu

{
δV

δx
Ac(θ) +

δV

δt
+ J(t)

}
= 0 (7.9)

From (7.9) obtained control algorithm u = u∗(x, t) ensure the closed-loop stability and

on the solution of (7.1) optimal value of cost function as J∗ = J(x0, t0) = V (x(0), t0).

Eq. (7.9) is known as Bellman-Lyapunov equation and function V (x, t) which satisfies

to (7.9) is Lyapunov function. For a given concrete structure of Lyapunov function the

optimal control algorithm may reduces from ”if and only if ” to ”if ” and for switched

systems, robust control, gain-scheduled control and so on to guaranteed cost.

Definition 7.1. Consider a stable closed-loop system (7.8). If there exists a control law

u (7.7) which satisfies (7.11) and a positive scalar J∗ such that the value of closed-loop

cost function (7.6) J satisfies J < J∗ for all θ ∈ Ωs and ξj , j = 1, 2 . . . , N satisfying

(7.3), then J∗ is said to be a guaranteed cost and u is said to be a guaranteed cost

control law for system (7.8).

Let us recall some parameter dependent stability results which provide basic further

developments.

Definition 7.2. Closed-loop system (7.8) is parameter dependent quadratically stable

in the convex domain Ω given by (7.3) for all θ ∈ Ωs and θ̇ ∈ Ωt if and only if there

exists a positive definite parameter dependent Lyapunov function V (ξ, θ) such that the

time derivative of Lyapunov function with respect to (7.8) is

dV (ξ, θ, t)

dt
< 0 (7.10)

Lemma 7.2. Consider the closed-loop system (7.8). Control algorithm (7.7) is the

guaranteed cost control law if and only if there exists a parameter dependent Lyapunov

function V (ξ, θ) such that the following condition holds [21]

Be(ξ, θ) = min
u

(
dV (ξ, θ, t)

dt
+ J(t)

)
≤ 0 (7.11)

Uncertain closed-loop system (7.8) conforming to Lemma 7.2 is called robust parameter

dependent quadratically stable with guaranteed cost.

We proceed with the notion of multi-convexity of a scalar quadratic function [22].
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Lemma 7.3. Consider a scalar quadratic function of θ ∈ Rs

f(θ) = α0 +

s∑
i=1

αiθi +

s∑
i=1

s∑
j>i

βijθiθj +

s∑
i=1

γiθ
2
i (7.12)

and assume that if f(θ) is multiconvex that is

∂2f

∂θ2
i

= 2γi ≥ 0, i = 1, 2, . . . , s

Then f(θ) is negative in the hyper rectangle (7.4) if and only if it takes negative values

at the vertices of (7.4), that is if and only if f(θ) < 0 for all vertices of the set given by

(7.4). For decrease the conservatism of Lemma 7.3 the approach proposed in [22] can be

used.

In this paragraph for uncertain gain scheduling system (7.1) we have proposed to use a

model uncertainty in the form of a convex set with N vertices defined by (7.3). Further-

more, we consider the new type of performance (7.6) to obtain the closed-loop system

guaranteed cost.

7.3 Main Results

This section formulates the theoretical approach to robust PID gain-scheduled con-

troller design for polytopic system (7.1), (7.2), (7.3) which ensures closed-loop system

parameter dependent quadratic stability and a guaranteed cost for all gain scheduling

parameters θ ∈ Ωs, and θ̇ ∈ Ωt. The main result on robust stability for the gain-

scheduled control system is given in the next theorem.

Theorem 7.1. The closed-loop system (7.8) is robust parameter dependent quadratic-

ally stable with a guaranteed cost if there exist positive definite matrix P (ξ, θ) ∈ Rn×n,

matrices N1, N2 ∈ Rn×n positive definite (semidefinite) matrices Q(θ), R, S(θ) and

gain-scheduled controller (7.7) such that

a)

L(ξ, θ) = W0(ξ) +
s∑
i=1

Wi(ξ)θi+

+
s∑
i=1

s∑
j>i

Wij(ξ)θiθj +

s∑
i=1

Wiiθ
2
i < 0

(7.13)

b)

Wii(ξ) ≥ 0, θ ∈ Ωs, i = 1, 2, . . . , s (7.14)
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where we consider parameter dependent Lyapunov matrix

P (ξ, θ) = P0(ξ) +

s∑
i=1

Pi(ξ)θi > 0 (7.15)

the above matrices (7.13) and (7.14) are given as follows:

W0(ξ) =

[
W110(ξ) W120(ξ)

∗ W220(ξ)

]
W110(ξ) = S0 + CTd Fd

T
0 RFd0Cd

+NT
1 (I −B0(ξ)Fd0Cd)

+ (I −B0(ξ)Fd0Cd)
T N1

W120(ξ) = −NT
1 (A0(ξ) +B0(ξ)F0C)

+ (I −B0(ξ)Fd0Cd)
T N2 + P0(ξ)

+CTd Fd
T
0 RF0C

W220(ξ) = −NT
2 (A0(ξ) +B0(ξ)F0C)

− (A0(ξ) +B0(ξ)F0C)T N2 +Q0

+CTF T0 RF0C +
∑s

j=1 Pj(ξ)θ̇i

Wi(ξ) =

[
W11i(ξ) W12i(ξ)

∗ W22i(ξ)

]
W11i(ξ) = Si + CTd

(
Fd

T
0 RFdi + Fd

T
i RFd0

)
Cd

−NT
1 (B0(ξ)Fdi +Bi(ξ)Fd0)Cd

− [(B0(ξ)Fdi +Bi(ξ)Fd0)Cd]
T N1

W12i(ξ) = −NT
1 (Ai(ξ) +B0(ξ)Fi +Bi(ξ)F0)C

− (Bi(ξ)Fd0Cd)
T N2 + Pi(ξ)

+CTd
(
Fd

T
i RF0 + Fd

T
0 RFi

)
C

W22i(ξ) = −NT
2 (Ai(ξ) + (B0(ξ)Fi +Bi(ξ)F0)C)

− [Ai(ξ) + (B0(ξ)Fi +Bi(ξ)F0)C]T N2

+Qi + CT
(
F T0 RFi + F Ti RF0

)
C

Wij(ξ) =

[
W11ij(ξ) W12ij(ξ)

∗ W22ij(ξ)

]
W11ij(ξ) = CTd

(
Fd

T
i RFdj + Fd

T
j RFdi

)
Cd

−NT
1

(
Bi(ξ)Fdj +Bj(ξ)Fdi

)
Cd

−CTd
(
Bi(ξ)Fdj +Bj(ξ)Fdi

)T
N1

W12ij(ξ) = −NT
1 (Bi(ξ)Fj +Bj(ξ)Fi)C

−CTd
(
Bi(ξ)Fdj +Bj(ξ)Fdi

)T
N2

+CTd
(
Fd

T
i RFj + Fd

T
j RFi

)
C

W22ij(ξ) = −NT
2 (Bi(ξ)Fj +Bj(ξ)Fi)C

−CT (Bi(ξ)Fj +Bj(ξ)Fi)
T N2

+CT
(
F Ti RFj + F Tj RFi

)
C

Wii(ξ) =

[
W11ii(ξ) W12ii(ξ)

∗ W22ii(ξ)

]
W11ii(ξ) = CTd Fd

T
i RFdiCd −NT

1 Bi(ξ)FdiCd
−CTd FdTi Bi(ξ)TN1
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W12ii(ξ) = −NT
1 Bi(ξ)FiC − CTd FdTi BT

i (ξ)N2

+CTd Fd
T
i RFiC

W22ii(ξ) = −NT
2 Bi(ξ)FiC − CTF Ti BT

i (ξ)N2

+CTF Ti RFiC

Due to space we provide only the outline of the proof. The proof is based on Lemma

7.2 and 7.3. The time derivative of the Lyapunov function V (ξ, θ) = xTP (ξ, θ)x is

dV (ξ, θ)

dt
=
[
ẋT xT

] [ 0 P (ξ, θ)

P (ξ, θ) P (ξ, θ̇)

][
ẋ

x

]
(7.16)

where

P (ξ, θ̇) =
s∑
i=1

Pi(ξ)θ̇

To isolate two matrices (system and Lyapunov) introducing matrices N1, N2 in the

following way

[2N1ẋ+ 2N2x]T [Md(ξθ)ẋ−Ac(ξ, θ)] = 0 (7.17)

and substituting (7.17), (7.16), J(t) (7.6) and control law (7.7) to (7.11), after some

manipulation one obtains

Be(ξ, θ) =
[
ẋT xT

] [ W11(ξ) W12(ξ)

W12
T (ξ) W22(ξ)

][
ẋ

x

]
(7.18)

where
W11 = S(θ) + CTd F

T
d (θ)RFd(θ)Cd +NT

1 Md(ξ, θ)

+MT
d (ξ, θ)N1

W12 = −NT
1 Ac(ξ, θ) +MT

d (ξ, θ)N2 + P (ξ, θ)

+CTd F
T
d (θ)RF (θ)C

W22 = −NT
2 Ac(ξ, θ)−ATc (ξ, θ)N2 +Q(θ)

+CTF T (θ)RF (θ)C + P (ξ, θ̇)

Eq. (7.18) immediately implies (7.13), which proves the sufficient conditions of The-

orem 7.1.

Eq.’s (7.13) and (7.14) are linear with respect to uncertain parameter ξj , j = 1, 2, . . . , N ,

therefore (7.13) and (7.14) have to hold for all j = 1, 2, . . . , N . For the known gain-

scheduled controller parameters, inequalities (7.13) and (7.14) reduce to LMI, for gain-

scheduled controller synthesis problem (7.13) (7.14) are BMI.

Remark 7.1. Theorem 7.1 can be used for a quadratic stability test, where Lyapuunov

function matrices (matrix) are either independent of parameter ξj , j = 1, 2, . . . , N or

parameter θi, i = 1, 2, . . . , s or both as listed below.

1. Quadratic stability with respect to model parameter variation. For this case one

has P (θ) = P0 +
∑s

i=1 Piθi. This Lyapunov function should withstand arbitrarily

fast model parameter variation in the convex set (7.3)
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2. Quadratic stability with respect to gain-scheduled parameters θ. For this case

Pi → 0, i = 1, 2 . . . , s and Lyapunov matrix is P (ξ, θ) = P0(ξ). This Lyapunov

function should withstand arbitrarily fast θ parameter variations.

3. Quadratic stability with respect to both ξ and θ parameters. Lyapunov matrix is

P (ξ, θ) = P0 and it should withstands arbitrarily fast model and gain-scheduled

parameter variation.

7.4 Examples

In this section the robust PID gain-scheduled controller design procedure described

in Section 7.3 is illustrated on three examples. Each example is calculated for three

quadratic stability approaches (Remark 7.1) and for parameter dependent quadratic

stability, that is

QS1: Quadratic stability with respect to uncertain model parameter variation. For this

case the Lyapunov matrix is in the form

P (ξ, θ) = P0 +
s∑
i=1

Piθi (7.19)

QS2: Parameter dependent quadratic stability. The Lyapunov matrix is given as

P (ξ, θ) = P0(ξ) +
s∑
i=1

Pi(ξ)θi (7.20)

where

Pj(ξ) =
N∑
v=1

Pjvξv, j = 0, 1, 2, . . . , s,
N∑
i=1

ξi = 1

QS3: Quadratic stability with respect to gain-scheduled parameters. The Lyapunov

matrix is in the form

P (ξ, θ) =

N∑
i=1

Piξi (7.21)

QS4: Quadratic stability with respect to both gain-scheduled and model uncertain para-

meters. The Lyapunov matrix is

P (ξ, θ) = P0 (7.22)

Example 1. The first numerical example has been borrowed from [4] with a small

modification. Consider a simple linear plant with parameter varying coefficients

ẋ(t) = γa(α)x(t) + γb(α)u(t)

y(t) = x(t)
(7.23)
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where

a(α) = −6− 2

π
arctan

( α
20

)
b(α) =

1

2
+

5

π
arctan

( α
20

)
γ ∈ 〈0.9, 1.1〉 being an unknown but constant coefficient and α ∈ 〈0, 100〉 a measurable

parameter. Let us take 3 working points α = 0, 30, 100 where one obtains two models for

γ = 0.9 and γ = 1.1 (for each working point). The above models have been recalculated

to the form (7.1), (7.2), (7.3). Due to I part controller the extended plant models are

A0 =

[
−6.4370γ 0

1 0

]
, A1 =

[
−0.3130γ 0

0 0

]
,

A2 =

[
−0.1240γ 0

0 0

]
, B0 =

[
1.5930γ

0

]
,

B1 =

[
1.275γ

0

]
, B2 =

[
0.3110γ

0

]
,

C =

[
1 0

0 1

]
, D = 0

For parameters R = rI, r = 1, Q(θ) = q0I + q1I + q2I, q0 = 0.1, q1 = q2 = 0.02,

S(θ) = s0I + s1I + s2I, s0 = s1 = s2 = 0, r0 = 2000 (0 < P (ξ, θ) < r0I), θi ∈ 〈−1, 1〉,
i = 1, 2; we have obtained the following PID robust gain-scheduled controller

R(s) = R0(s) +R1(s)θ1 +R2(s)θ2

QS1: PENBMI failed

QS2: Closed-loop maximal eigenvalue for θ1 = θ2 = 0 is λmax = −0.2498

R0(s) = −1.3667− 1.2936/s− 0.07s

R1(s) = 1.8456 + 0.6652/s+ 0.0289s

R2(s) = 1.431 + 0.5161/s+ 0.028s

QS3: Closed-loop maximal eigenvalue for θ1 = θ2 = 0 is λmax = −0.0407

R0(s) = −9.6682− 0.5575/s+ 0.0375s

R1(s) = 0.5187 + 0.0235/s+ 0.0019s

R2(s) = 1.3277 + 0.0602/s+ 0.0049s

QS4: PENBMI failed

The closed-loop dynamic behaviours for QS3 are given in Fig. 7.1, where the black

line is the setpoint w(t) and the coloured lines are the measured outputs y(t) at

α = 0, 2, 4, . . . , 100. Another closed-loop dynamic behaviours for QS2, γ = 1 are

given in Fig. 7.2, where w(t) is the setpoint, y(t) is the system output, u(t) is the

controller output, θ1 and θ2 are calculated scheduled parameters and α is the exogenous

signal.
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Figure 7.1: Simulation results at QS3, γ = 1, α ∈ 〈0, 100〉

Figure 7.2: Simulation results at QS2, γ = 1, α ∈ 〈0, 100〉

Example 2. Second example has been borrowed from [3]. Uncertain model (7.1) is

given as follows

A(θ) =

[
0.1γ θ1 + 4θ2

−1 0

]
, B(θ) =

[
0

γθ1 + 1.5θ2

]
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where θ1 + θ2 = 1, θi ≥ 0, i = 1, 2 and uncertain parameter γ ∈ 〈0.9, 1.1〉. Substituting

for θ2 = 1− θ1 and for γ = 0.9 or γ = 1.1 one obtains

A01 =

[
0.09 4

−1 0

]
, A02 =

[
0.11 4

−1 0

]
,

A11 = A12 =

[
0 −3

0 0

]
, B01 = B02 =

[
0

1.5

]
,

B11 =

[
0

−0.6

]
, B12 =

[
0

−0.4

]
,

C =
[

1 1
]
, D = 0

For parameters r = 1, θ1 ∈ 〈0, 1〉, q0 = 0.001, s0 = 0, q1 = 0.0002, s1 = 0, r0 = 20000

the following PID controller is obtained

QS1: Closed-loop maximal eigenvalue for θ1 = θ2 = 0 is λmax = −0.1483

R0(s) = −4.2735− 0.7288/s− 0.521s

R1(s) = −29.0575− 8.6869/s− 15.9056s

QS2: PENBMI failed

QS3: Closed-loop maximal eigenvalue for θ1 = θ2 = 0 is λmax = −0.1129

R0(s) = 0.0805− 0.0466/s− 1.9234s

R1(s) = −0.0649− 0.4289/s− 15.0506s

QS4: Closed-loop maximal eigenvalue for θ1 = θ2 = 0 is λmax = −0.0752

R0(s) = 0.0304− 0.0405/s− 1.7515s

R1(s) = −0.0763− 0.5508/s− 19.9456

The closed-loop dynamic behaviours are given in Fig. 7.3.

Example 3. Consider the uncertain system (7.1) [9]

A0 =

[
0.2γ −0.8

0.3 −1.3

]
, A1 =

[
0.0 −0.3γ

0.5γ 0

]
,

B0 =

[
0.4

0.8γ

]
, B1 =

[
0.3

0.1

]
γ, C =

[
1 0
]

where γ ∈ 〈0.9, 1.1〉 constant but uncertain parameter θ1 ∈ 〈0, 1〉. Despite the simplicity

the system with state feedback is not quadratically stabilizable with a fixed gain matrix

for γ = 1. Substituting γ = 0.9 and γ = 1.1 we obtain the uncertain plant model (7.1).

For parameters r = 1, q0 = 0.0001, s0 = 0, q1 = 0.0001, s1 = 0 and r0 = 20000 the

following robust PID controllers are obtained

QS1: Closed-loop maximal eigenvalue for θ1 = θ2 = 0 is λmax = −0.0222

R0(s) = 1.0149 + 0.0172/s− 1.94333s

R1(s) = [−0.4446 + 0.6918/s+ 11.845s]× 10−14 .
= 0
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Figure 7.3: Simulation results at QS1, γ = 1, θ1 ∈ 〈0, 1〉

QS2, QS3 and QS4: PENBMI failed

When one changes s0 = 0.1, s1 = 0.001 the new PID controller parameters are obtained

for QS1:

R0(s) = 1.0435 + 0.017/s− 1.7061s

R1(s) = [−0.224 + 0.643/s+ 10.258]× 10−14 .
= 0

Closed-loop maximal eigenvalue for θ1 = θ2 = 0 is λmax = −0.0209.

The closed-loop dynamic behaviours are given in Fig. 7.4.

Figure 7.4: Simulation results at θ1 = 0

7.5 Conclusion

A novel design procedure has been proposed for robust gain-scheduled controller design.

Several forms of parameter dependent quadratic stability are presented which withstand
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arbitrarily fast model parameter variation or/and arbitrarily fast gain-scheduled para-

meter variation. Because of BMI approach the future research should transform BMI

to LMI and the obtained design procedure for a polytopic continuous system should be

transformed to discrete ones. The proposed approach contributes to the design tools of

a robust gain-scheduled controller for uncertain polytopic systems.
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8

Robust Controller Design for T1DM

Individualized Model: Gain Scheduling

Approach (Paper 5)

Abstract

This paper deals with the robust gain-scheduled controller design for individualized type

1 diabetes mellitus (T1DM) subject model. The controller is designed using LPV model

created from T1DM minimal model with two additional subsystems - absorption of

digested carbohydrates and subcutaneous insulin absorption. Data collected from con-

tinuous glucose monitoring with the help of pharmacodynamics and pharmacokinetics

characteristics were used for model identification. The closed-loop stability and cost for

all scheduled parameters is guaranteed by the controller design approach. The benefits

of the presented approach are shown in the simulation results.

Keywords: LPV system, Robust controller, Gain scheduling, Output feedback, Quad-

ratic stability, Type 1 diabetes mellitus model.

8.1 Introduction

Computer modeling of type 1 diabetes mellitus (T1DM) has attracted considerable at-

tention in the past decade. Patients with T1DM suffer from high levels of glucose

concentration due to defective insulin secretion. The lack of insulin is preventing gluc-

ose uptake and utilisation by cells. Long-term high glucose concentration results in

several health complications. The most common intensified insulin therapy nowadays is

based on manual exogenous insulin dosing to either keep the level of basal insulin or to

suppress glycemic excursions after a meal. The patient needs to take several fingerstick

blood glucose measurements a day and make decisions on insulin doses. A closed-loop

blood glucose control would dramatically improve the life of T1DM subjects. Despite the
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fast development of insulin pumps and continuous glucose measurement systems, a fully

autonomous control of glycemia has not been introduced in a commercially available

device yet.

The robust control theory is well established for linear systems but almost all real pro-

cesses are more or less nonlinear. If the plant operating region is small, one can use the

robust control approaches to design a linear robust controller where the nonlinearities

are treated as model uncertainties. However, for real nonlinear processes, where the

operating region is large, the above mentioned controller synthesis is inapplicable. For

this reason the controller design for nonlinear systems is nowadays a very determinative

and important field of research.

Gain scheduling is one of the most common used controller design approaches for non-

linear systems and has a wide range of use in industrial applications. Many of the

early articles were associated with flight control [1] and aerospace [2]. Then, gradu-

ally, this approach has been used almost everywhere in control engineering, which was

greatly helped with the introduction of LPV systems. Linear parameter-varying systems

are time-varying plants whose state space matrices are fixed functions of some vector of

varying parameters θ(t). They were introduced first by Jeff S. Shamma in 1988 to model

gain scheduling. Today the LPV (Linear Parameter-Varying) paradigm has become a

standard formalism in systems and controls with lot of researches and articles devoted

to analysis, controller design and system identification of these models [3].

The main motivation of our paper were our previous results in gain scheduling [4], [5],

[6] and the results from T1DM research [7], [8] and [9]. In this paper a novel robust

discrete gain scheduling controller design for Bergman’s minimal model of glucose-insulin

dynamics coupled with insulin and carbohydrates absorption subsystems is proposed.

Our notations are standard, D ∈ Rm×n denotes the set of real m×n matrices. Im is an

m×m identity matrix and Zm denotes a zero matrix. If the size can be determined from

the context, we will omit the subscript. P > 0 (P ≥ 0) is a real symmetric, positive

definite (semidefinite) matrix.

Organisation of the paper is following. Section 8.2 includes problem formulation and

some preliminaries are given. In Section 8.3 sufficient stability conditions in the form of

BMI and/or LMI are given for the design of a robust discrete gain-scheduled controller.

In Section 8.4 the obtained results are illustrated on the T1DM model.

8.2 Problem formulation and preliminaries

In this section we briefly describe the mathematical model of a T1DM subject, which

was based on Bergman’s minimal model of insulin-glucose interaction [10]. Later in this

work the model will be used as a base for controller design and as a patient simulator

for verification of the controller.
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8.2. Problem formulation and preliminaries

Our aim was to adjust the parameters of the proposed model so that the output of

the model fits the continuous glucose monitoring (CGM) data of a particular T1DM

subject. For identification of specific model parameters we used pharmacokinetics (PK)

and pharmacodynamics (PD) measurements (as published in [11, 12]) of the particular

insulin prescribed to the patient. The information about ingested carbohydrates was

also recorded during data acquisition.

8.2.1 T1DM model

Bergman’s minimal model consists of two differential equations in the form

Ẋ(t) = −p2X(t) + p2SI (I(t)− Ib) (8.1a)

Ġ(t) = −
(
SG +X(t)

)
G(t) + SGGb +

(
1

VG

)
Ra(t) (8.1b)

where SG [1/min] is the rate constant which gives the rate of change of glucose caused by

deviation from the basal glucose concentration Gb [mg/dl], parameter SI [ml/µU/min]

is known as the insulin sensitivity index and p2 [1/min] is a rate constant. Parameter

VG [dl/kg] represents the glucose distribution volume per kilogram of body weight BW

[kg]. G(t) [mg/dl] is the blood glucose concentration and signal X(t) [1/min] represents

the insulin in remote compartment. Values Ib [µU/ml] and Gb [mg/dl] are the basal

insulin concentration and the basal glucose concentration respectively. In a basal steady

state we have X(0) = 0 and G(0) = Gb.

Inputs of the model (8.1) are plasma insulin concentration I(t) [µU/ml] and glucose rate

of appearance Ra(t) [mg/kg/min]. Signal Ra(t) can have in general two sources – the

absorption of glucose from gastro-intestinal tract (modeled as a subsystem) and direct

intravenous glucose administration.

Insulin absorption is modeled as a separate subsystem where the output is insulin con-

centration I(t) [13, 14]. The subsystem has the form

Ṡ1(t) = −
(

1

TI

)
S1(t) + v(t) (8.2a)

Ṡ2(t) = −
(

1

TI

)
S2(t) +

(
1

TI

)
S1(t) (8.2b)

İ(t) = −kII(t) +

(
1

TI

)(
1

VI

)
S2(t) (8.2c)

where parameter TI [min] is a time constant of the subsystem, kI [1/min] is a decay rate

of insulin in plasma and parameter VI [dl/kg] represents a insulin distribution volume

per kilogram of body weight. Input v(t) [µU/kg/min] is insulin subcutaneous infusion

rate, S1(t) and S2(t) [µU/kg] represent the amount of insulin in compartments of the

subsystem.

Third subsystem describes the glucose absorption from gastrointestinal tract, i.e. output

of the subsystem is the signal Ra(t) [mg/kg/min]. The subsystem is described as follows
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Ḋ(t) = −
(

1

TD

)
D(t) +

(
1

TD

)
AGd(t) (8.3a)

Ṙa(t) = −
(

1

TD

)
Ra(t) +

(
1

TD

)
D(t) (8.3b)

where parameter TD [min] is a time constant and AG [dimensionless] is a friction of

ingested carbohydrates which are effectively absorbed. Input d(t) [mg/kg/min] is the

rate of carbohydrate ingestion at meal time, i.e. signal d(t) is an impulse with a width

of one sampling period while the impulse area corresponds to the amount of ingested

carbohydrates.

8.2.2 Identification of model parameters

For identification of model parameters we used data collected from a male T1DM subject

aged 14, with BW = 64.6 [kg] and using fast-acting insulin NovoRapid (insulin Aspart)

from an insulin pump.

8.2.2.1 Insulin absorption subsystem:

The first step in model identification was identifying of insulin absorption subsystem

based on pharmacokinetics data of the used insulin. PK data from [12] were used. An

average basal insulin infusion rate vb [µU/kg/min] of the subject during the day is known

since data from insulin pump are available. Signal v(t) is a sum of bolus part vB(t) and

basal part vb.

The aim is to identify the vector of unknown parameters Θ1 =
[
TI kI VI

]
so that the

error between simulated insulin concentration I(t) and PK data is minimized. In basal

(steady) state for a given vb we get the basal insulin concentration Ib as the output

and I(t) response after a bolus administration. We used the nonlinear least-squares

optimization to identify the vector Θ1.

8.2.2.2 Insulin sensitivity index and insulin action time:

In the next step we identified the parameter related to insulin sensitivity SI and insulin

action time p2. These parameters determine dynamics of remote insulin signal X(t).

The measuring principle of pharmacodynamics is to maintain glycemia at basal concen-

tration after bolus administration by intravenous glucose infusion. This glucose infusion

corresponds to the signal Ra(t) in the equation (8.1b).

If the equation (8.1b) is written in the form

Ġ(t) = −SG (G(t)−Gb) +
1

VG

(
Ra(t)− VGX(t)G(t)

)
(8.4)
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Table 8.1: T1DM identified model parameters

TI kI VI SI p2 SG TD

44.55 0.1645 138.8 0.00159 0.0106 0.032 33.474

Table 8.2: Other fixed parameters of the model

VG Gb AG

1.467 8.5 0.95

and we measure the PK, i.e. Ġ(t) = 0, then G(t) ≈ Gb ∀t. It is obvious that parameter

SG has minor influence in order to achieve Ġ(t) = 0, so we assume SG = 0 during this

step of parameter identification.

The aim is to identify vector of unknown parameters Θ2 =
[
SI p2

]
so that the error

between G(t) and Gb is minimized. Signal Ra(t) is given by PD data.

8.2.2.3 Finalizing the model:

At last, remaining parameters SG and TD are identified based on CGM data. The data

containing both basal and bolus insulin dosing together with the amount of ingested

carbohydrates were used as inputs to the model.

Now we are identifying a vector of unknown parameters Θ3 =
[
SG TD

]
so that the error

between measured CGM data and the simulator output is minimized. Again, nonlinear

least–square optimization was used.

All identified parameters are reported in table 8.1. For the extended description of the

identification process, please refer to our preliminary work [9]

8.3 LPV-based robust gain-scheduled controller design

In this section a new LPV model is presented on the base of the nonlinear Bergman’s

minimal model, which is then used to design a robust discrete LPV-based gain-scheduled

controller for T1DM.

8.3.1 LPV model of T1DM

The Bergman’s model (1) with the insulin absorbation model (2) can be transfomed to

the following LPV model with substitutions x1(t) = G(t), x2(t) = X(t), x3(t) = S1(t),

x4(t) = S2(t), x5(t) = I(t) and u(t) = v(t)

ẋ(t) = A(θ)x(t) +Bu(t) +W (θ)

y(t) = Cx(t)
(8.5)

105



Robust Controller Design for T1DM Individualized Model: GS Approach (Paper 5)

where θ(t) ∈ Ω is a vector of scheduled parameters and

A(θ) =


−p1(θ) + b(θ) −a(θ) 0 0 0

0 −p2 0 0 p3(θ)

0 0 − 1
Ti

0 0

0 0 1
Ti
− 1
Ti

0

0 0 0 1
TiVi

−ki



W (θ) =


p1(θ)Gb
−p3(θ)Ib

I

0

0

 , B =


0

0

1

0

0

 , x =


x1

x2

x3

x4

x5


C =

[
1 0 0 0 0

]
furthermore

p1(θ) = p10 +

p∑
i=1

p1iθi, p3(θ) = p30 +

p∑
i=1

p3iθi,

a(θ) = a0 +

p∑
i=1

aiθi, b(θ) = b0 +

p∑
i=1

biθi

The coefficient a(θ) is used to cover the nonlinear part of (8.1b) X(t)G(t) → x1x2 in

the following way

a(θ) = G(t)⇒ a0 + a1θ1 = x1 ⇒ a(θ)x2 = x1x2 (8.6)

where θ1(t) = y−a0
a1

. The coefficients a0 and a1 were calculated so as to maintain the

scheduling parameter θ1 in the range 〈−1, 1〉

a0 =
min(y) +max(y)

2
, a1 =

min(y)−max(y)

2
(8.7)

Note, the coefficients ai, i = 2, 3, 4, 5 are equal to zero. Similarly, the coefficient b(θ) is

calculated in the following way

b(θ)y = Ra(t)⇒ b(θ) = b0 + b2θ2 + b3θ3 (8.8)

where coefficients b0 and b2 are calculated so as to maintain the scheduling parameter

θ2 in the range 〈−1, 1〉
b0 =

min(Ra/y) +max(Ra/y)

2

b2 =
min(Ra/y)−max(Ra/y)

2

θ2 =

Ra
y − b0
b1

Furthermore b3 = 5 % of avarage Ra(t) (uncertainty) and bi = 0, i = 1, 4, 5 as well as

θ3(t) ∈ 〈−1, 1〉 is unknown but constant parameter describing uncertainty.
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For parameters p1 and p3 we also considered an uncertainty (±5%)

p1(θ) = p10 + p14θ4, p3(θ) = p30 + p35θ5 (8.9)

where p10 = p1, p14 = 5 % of p1, p30 = p3, p35 = 5 % of p3, p1i = 0, i = 1, 2, 3, 5,

p3i = 0, i = 1, 2, 3, 4 and θ4, θ5 ∈ 〈−1, 1〉 are unknown but constant parameters.

For the robust discrete LPV-based gain scheduling controller design the model (8.5)

is transformed to discrete time-space and W (θ) is neglected, because has no effect on

stability.

8.3.2 Robust gain-scheduled controller design

The output feedback gain-scheduled control law is considered for discrete-time PID

(often denoted as PSD) controller in the form

u(k) = KP (θ|k)e(k) +KI(θ|k)

k∑
i=0

e(i)

+KD(θ|k)(e(k)− e(k − 1))

(8.10)

where e(k) = y(k) − w(k) is control error, w(k) is reference value and gain matrices

KP (·), KI(·), KD(·) are controller parameter matrices1 (indexes P, I, D means propor-

tional, sum (integral) and first difference (derivative), respectively) in the form

KP (θ|k) = KP 0 +
∑p

i=1KP iθi(k)

KI(θ|k) = KI0 +
∑p

i=1KI iθi(k)

KD(θ|k) = KD0 +
∑p

i=1KDiθi(k)

Note that the number of controller gain matrices is only 2 (for θ1 and θ2), the rest 3

(uncertainty) is equal to zero. Because the reference signal w(k) does not influence the

closed-loop stability, we assume that it is equal to zero. For w(k) = 0, the control law

(8.10) can be rewritten as

u(k) = KP (θ|k)y(k) +KI(θ|k)
k∑
i=0

y(i)

+KD(θ|k)(y(k)− y(k − 1))

(8.11)

State space description of PID controllers can be derived in the following way [15]. We

can extend the system with two state variables z(k) = [zT1 (k), zT2 (k)]T where z1(k) =∑k−2
i=0 y(i) and z2(k) =

∑k−1
i=0 y(i), then y(k − 1) = z2(k)− z1(k). Substituting to (8.11)

one obtains

u(k) = (KP (θ|k) +KI(θ|k) +KD(θ|k)) y(k)

+KI(θ|k)z2(k)−KD(θ|k)(z2(k)− z1(k))
(8.12)

1For SISO systems they are scalars.
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Control law (8.12) can be transformed to matrix form

u(t) = F (θ|k)ỹ(k) (8.13)

where ỹ = [y(k), z1(k), z2(k)]T is the extended measurement output vector and

F (θ|k)T =

KP (θ|k) +KI(θ|k) +KD(θ|k)

KD(θ|k)

KI(θ|k)−KD(θ|k)


Substituting the control law (8.13) to the discrete uncertain LPV system the closed-loop

system is obtained in the form

x̃(k + 1) = Ac(θ|k) x̃(k) (8.14)

where x̃(k) = [x(k), z1(k), z2(k)]T , Ac(θ|k) = Ar(θ|k) +Br(θ|k)F (θ|k)Cr(θ|k) and

Ar(θ|k) =

A(θ|k) 0 0

0 0 I

C 0 I

 , Br(θ|k) =

B(θ|k)

0

0

 ,
Cr(θ|k) =

C 0 0

0 I 0

0 0 I


Remark 8.1. The controller’s filter of the derivative (differential) part can be included

in the system model.

To access the performance quality a quadratic cost function [16] known from LQ theory

is used in this paper, where weighting matrices depends on scheduling parameters [17].

Using this approach we can affect performance quality in each operating point separately.

The quadratic cost function is then in the form

Jdf (θ) =
∞∑
k=0

(x̃(k)TQ(θ|k) x̃(k) + u(k)TRu(k)

=

∞∑
k=0

Jd(θ|k)

(8.15)

where Q(θ|k) = Q0 +
∑p

i=1Qiθi, Qi = QTi ≥ 0 where Q0, Qi ∈ Rn×n, R ∈ Rm×m

are symmetric positive definite (semidefinite) and definite matrices, respectively. The

concept of guaranteed cost control is used in a standard way.

Definition 8.1. Consider the system (8.5) with control algorithm (8.10). If there exists

a control law u∗ and a positive scalar J∗ such that the closed-loop system (8.14) is stable

and the value of closed-loop cost function (8.15) satisfies J ≤ J∗ then J∗ is said to be a

guaranteed cost and u∗ guaranteed cost control law for system (8.5).
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Substituting the control law (8.12) to the quadratic cost function (8.15) we can obtain

Jd(θ|k) = x̃T
(
Q(θ|k) + CTF (θ|k)TRF (θ|k)C

)
x̃ (8.16)

Definition 8.2. [18] The linear closed-loop system (8.14) for θ ∈ Ω is quadratically

stable if and only if there exist a symmetric positive definite matrix P > 0 and for the

first difference of Lyapunov function V (k) = xTPx along the trajectory of closed-loop

system (8.14) holds

∆V (θ|k) = Ac(θ|k)TPAc(θ|k) + P < 0 (8.17)

From LQ theory we introduce the well known results.

Lemma 8.1. [19] Consider the closed-loop system (8.14). Closed-loop system (8.14) is

affinely quadratically stable with guaranteed cost if and only if the following inequality

holds

Be = min
u
{∆V (θ|k) + Jd(θ|k)} ≤ 0 (8.18)

for all θ(k) ∈ Ω.

The main result of this section, the robust discrete gain-scheduled controller design pro-

cedure, relies on the concept of multi-convexity, that is, convexity along each direction θi
of the parameter space. The implications of multiconvexity for scalar quadratic functions

are given in the next lemma [20].

Lemma 8.2. Consider a scalar quadratic function of θ ∈ Rp.

f (θ1, . . . , θp) = a0 +

p∑
i=1

aiθi +

p∑
i=1

p∑
j>i

bijθiθj +

p∑
i=1

ciθ
2
i

and assume that f (θ1, . . . , θp) is multi-convex, that is ∂2f(θ)
∂θ2i

= 2ci ≥ 0 for i = 1, 2, . . . , p.

Then f(θ) is negative for all θ ∈ Ω if and only if it takes negative values at the corners

of θ.

Using Lemma 8.1 and 8.2 the following theorem is obtained

Theorem 8.1. Closed-loop system (8.14) is quadratically stable with guaranteed cost

if a positive defined P > 0 for all θ(k) ∈ Ω exists, matrices Qi, R, i = 1, 2, . . . p and

gain-scheduled controller matrices F (θ(k)) satisfy

M(θ(k)) < 0; θ(k) ∈ Ω (8.19)

Mii ≥ 0; i = 1, 2, . . . p (8.20)

where

M(θ) = M0 +

p∑
i=1

Miθi +

p∑
i=1

p∑
j>i

Mijθiθj +

p∑
i=1

Miiθ
2
i (8.21)
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furthermore

M0 =

−P +Q0 C
TF T0 AcT0

F0C −R−1 0
Ac0 0 −P−1


Mi =

 Qi CTF Ti AcTi
FiC 0 0
Aci 0 0


Mij =

 0 0 AcTij
0 0 0

Acij 0 0

 , Mii =

 0 0 AcTii
0 0 0
Acii 0 0


Ac0 = Ar0 +Br0F0Cr
Aci = Ari +BriF0Cr +Br0FiCr
Acij = BriFjCr +BrjFiCr
Acii = BriFiCr

Proof. Proof is based on Lemma 8.1 and 8.2. From (8.18) we can obtain

M(θ(k)) = Ac(θ(k))TPAc(θ(k)) + P

+Q+ CTF (θ(k))TRF (θ(k))C < 0
(8.22)

Using Schur complement we obtain

M(θ(k)) =

W11 W
T
21 W

T
31

W21 W22 W
T
32

W31 W32 W33

 < 0 (8.23)

where
W11 = −P +Q(θ(k)) W22 = −R−1

W21 = F (θ(k))C W32 = 0

W31 = Ac(θ(k)) W33 = −P−1

After we extend (8.23) to affine form we obtain (8.19) and (8.20) which proofs the

Theorem 8.1.

Note that Theorem 8.1 in its presented form is in the form of BMI. One can use a free

and open source BMI solver PENLAB or we can linearize the nonlinear part of (8.19)

to use LMI solver (LMILAB or SEDUMI ).

lin(−P−1) ≤ X−1(P −X)X−1 −X−1 (8.24)

where in each iteration pores X = P . Using this linearization, the element obtaining

the nonlinear part (M0) become as follows

M0 =

−P +Q0 C
TF T0 AcT0

F0C −R−1 0

Ac0 0 X−1(P −X)X−1 −X−1
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8.4 Simulation experiments

In this section the proposed robust discrete gain-scheduled controller is verified using

the individualized T1DM Bergman’s model served as a patient. For controller synthesis

the LPV model described in Section 8.3.1 with parameters presented in Section 8.2.2,

transformed to discrete time-space with sample time Ts = 5min was used. The response

of Bergman’s model with the discrete LPV model to an insulin bolus is shown in Fig 8.1.

The disturbance has been considered in the form of mixed meal ingestion. The main

objective was to keep the blood glucose concentration levels within normal glycemic

range (3.8 – 10 mmol/l).

Figure 8.1: Bergman’s model with the discrete LPV model

The obtained model was extended for robust discrete gain-scheduled PID controller

design (8.14). Then using Theorem 8.1 with weighting matrices Q = qiI, q0 = 1× 10−5,

q1 = 1 × 10−1, q2 = 1 × 10−2, q3 = q4 = q5 = 0 R = rI, r = 1 and ξL ≤ P (θ) ≤ ξU ,

ξU = 1× 108, ξL = 1× 10−5, Ts = 5min with LMILAB one can obtain robust discrete

gain-scheduled controller in the form (8.10) where

Kp(θ) = −101.1243− 250.7895 θ1 + 239.9897 θ2

Ki(θ) = −5.1342× 10−8 − 1.2379× 10−7 θ1

−1.0598× 10−5 θ2

Kd(θ) = −1012.1475− 5998.7879 θ1 + 0.1235 θ2

For the illustration propose simulation experiment results are shown in Fig. 8.2. During

manual administration of insulin by the T1DM subject, the measured glycemia has been

higher than 10 mmol/l during 45% of the monitored time. In the case of automatic

dosing controlled by the proposed gain-scheduled algorithm, the time when glycemia

reached the level of 10 mmol/l or more was reduced to 9.9% of the simulation time.

8.5 Conclusion

The robust discrete gain-scheduled controller design for Bergman’s minimal model of

glucose-insulin dynamics coupled with insulin absorption subsystem and carbohydrates

absorption subsystem was proposed in this paper. In contrast to publications in lit-

erature we presented a completely new LPV description of Bergman’s minimal model

and a new approach to controller design. The obtained design procedure can be used in
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Figure 8.2: Simulation results for time period of 4 days

systems where we need to save the operation energy (e.g. low-cost micro-controllers).

The presented theory opens new possibilities for further research and study in this area.
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[4] V. Veselý, A. Ilka, Gain-scheduled PID controller design, Journal of Process Control

23 (8) (2013) 1141–1148.

112



Bibliography
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[19] V. Kuncevič, M. Lyčak, Control system design using Lyapunov function approach

(in Russian), Nauka, Moskva, 1977.

[20] P. Gahinet, P. Apkarian, M. Chilali, Affine parameter-dependent Lyapunov func-

tions and real parametric uncertainty, IEEE Transactions on Automatic Control

41 (3) (1996) 436–442.

114



9

Novel approach to switched controller

design for linear continuous-time

systems (Paper 6)

Abstract

In this paper we study the novel approach to the design of an output feedback switched

controller with an arbitrary switching algorithm for continuous-time invariant systems

which is described by a novel plant model as a gain-scheduled plant using the multiple

quadratic stability and quadratic stability approaches. In the proposed design proced-

ure there is no need to use the notion of the ”dwell-time”. The obtained results are

in the form of bilinear matrix inequalities (BMI). Numerical examples show that in the

proposed method the design procedure is less conservative and gives more possibilities

than that described in the papers published previously.

Keywords: Switched system, continuous time system, output feedback, quadratic sta-

bility, multi quadratic stability.

9.1 Introduction

Switched systems have played an important role in the past decade. Motivation for

studying switched systems comes from two facts:

• switched systems have numerous applications in the control of real plants, and

• in real control, there are dynamical systems that cannot be stabilized by any

continuous static output/state feedback control law, but a stabilizing switching

control scheme can be found.
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Switched systems constitute an important class. The switched system consists of a con-

tinuous or discrete time system and a switching law that specifies the switching between

them. It is pointed out in [1–4] that the stability of switched systems plays an important

role in the analysis and design of switched controllers. There are at least two approaches

to the stability analysis of switched systems: The quadratic stability approach with a

common Lyapunov function gives the stability under an arbitrary switching law, and

Multiple Lyapunov functions, which is less conservative. A huge number of references

can be found on the switched control of linear discrete-time invariant systems, but in the

field of linear continuous-time invariant systems the number of references is rather small.

Representatives are the following references [5–9]. In the first paper the authors intro-

duce, into the switched controller design procedure, the notion of dwell-time Td (minimal

time interval between switching). In the stability analysis condition of switched systems

the dwell-time is in the term eAcTd (Ac-closed-loop matrix (9.4)). The proposed design

procedure for stability analysis and switching controller design for the real switching

time interval T ≥ Td becomes rather conservative. The above ”dwell-time term” com-

plicated the switched controller design procedure for continuous-time systems. In [6]

sufficient conditions are given for the stability of linear systems with a dwell-time and

with polytopic type parameter uncertainty. A Lyapunov function, in quadratic form for

each mode, which is non-increasing at the switching instants is assigned to each mode.

During the dwell-time this function varies piecewise linearly in time after switching oc-

curs. The proposed method was applied to stabilization via the state feedback for both

nominal and uncertain cases. Since within the dwell-time the Lyapunov function varies

piecewise linearly and the real switching time interval T > Td, the switching controller

design procedure becomes rather conservative. In [7] the stability analysis problem for

a class of switched positive linear systems with average dwell time switching is invest-

igated. Paper [8] investigates the stability of a class of switched linear systems and

proposes a number of new results on the stability analysis. A novel analysis method is

developed by using the 2-norm technique, and then several stability results are obtained

based on the new analysis method. It is shown that the main results obtained in this

paper not only guarantee the stability of the systems under arbitrary switching but also

provide an algorithm to find the minimum dwell time with which switches make the

switched systems stable. Dwell-time switching is a logic for orchestrating the switch-

ing between controllers in order to control a proces with a highly uncertain model [9].

The idea of dwell-time switching is to use a parameter tuner which switches controller

parameter values rather than continuously adjusting them. Such switched system con-

sisting of two interconnected subsystems, namely a ”continuous part” and a ”dwell-time

switching logic”. Together these two subsystems constitute a parameter tuner which

is a bona fide hybrid (switched) system. Above system generated ”switching logic” to

make estimation error (performance) ”small” in some sense [9]. Note that implementa-

tion of dwell-time switching logic requires capable of minimizing some performance over

the set of controller in real time. In this paper the proposed switched controller design

procedure for continuous-time systems has none of the above mentioned drawbacks due

to dwell-time consideration. An overview of switched systems can be found in [1, 3, 10].

In this paper, new quadratic stability and multi quadratic stability conditions of closed-

loop switched systems for arbitrarily switching [3] are given using a new model of
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switched continuous time linear systems. In the proposed approach to switching con-

troller design for continuous time systems there is no need to use the approach of the

”dwell-time” [5, 6]. The proposed switched controller design procedure can easily be

expanded to the case of robust switched controller design [11] with multi parameter

dependent quadratic stability.

Organization of the paper is as follows. Section 9.2 includes problem formulation of the

switched controller design using the novel proposed model and some preliminary results

are given. In Section 9.3 sufficient stability conditions in the form of BMI for the case

of quadratic and multi quadratic approach are given and in Section 9.4 the obtained

results are illustrated on some examples.

Hereafter, the following notational conditions will be adopted. Given a symmetric mat-

rix P = P T ∈ Rn×n, the inequality P > 0 denotes matrix positive definiteness. Symbol

∗ denotes a block that is transposed and complex conjugated to the respective symmet-

rically placed one. I denotes the identity matrix of corresponding dimensions.

9.2 Preliminaries and problem formulation

Let us consider a class of linear continuous-time invariant switched systems∑
σ : ẋ(t) = A(θ)x(t) +B(θ)u(t)

y(t) = Cx(t)

x(0) = x0

(9.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control vector, y(t) ∈ Rl is the

output vector of the system to be controlled, and σ ∈ S = {1, 2, . . . , p} is an arbitrarily

switching algorithm. The arbitrary switching algorithm σ is a piecewise constant, right

continuous function which specifies at each time the index of the active closed-loop

system [3, 12], p is the number of switched modes of linear systems and

A(θ) = A0 +

p∑
i=1

Aiθi , B(θ) = B0 +

p∑
i=1

Biθi (9.2)

where
∑p

i=1 θi = 1, θi ∈ 〈0, 1〉 ∈ Ωθ, i = 1, 2, . . . , p are switching parameters. For

calculation of all the above matrices in (9.1) see the example. Note that for switching

systems the stable steady state points of switching parameters θi, i = 1, 2, . . . , p are

equal to 0 or 1. If the switching parameter θi, i = 1, 2, . . . , p differs from 0 or 1, it is

moving to one of the stable points with the rate of θi change θ̇i, i = 1, 2, . . . , p. There

are two possibilities for switching parameters:

• the rates of change of switching parameters are infinite, that is θi = 1 holds for

the i-th mode and θj = 0 for j = 1, 2, . . . , p, j 6= i (quadratic stability approach),

or
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• the rates of change of switching parameters are finite, assume that the system

switched from i to j mode. For this case one has θi + θj = 1, θ̇i + θ̇j = 0 and

θk = 0, k 6= i, j (multiple quadratic stability approach).

For both cases θi, i = 1, 2, . . . , p are known and the number of system mode or the

number of vertices is equal to ”p”. Note that number of vertices for polytopic system is

2p.

The switched output feedback control law is considered in the form

u(t) = F (θ)y(t) = F (θ)Cx(t) (9.3)

where

F (θ) = F0 +

p∑
i=1

Fiθi

The structure of matrices Fi, i = 0, 1, . . . , p can be prescribed, for decentralized control

structure Fi is a block diagonal matrix and so on. The closed-loop system is obtained

from Eqs. (9.1) and (9.3)

ẋ(t) = (A(θ) +B(θ)F (θ)C)x(t) = Ac(θ)x(t) (9.4)

To access the system performance, we consider a standard positive definite quadratic

cost function with respect to state x and control u.

J =

∫ ∞
0

(
x(t)T (t)Qx(t) + uT (t)Ru(t)

)
dt =

∫ ∞
0

J(t)dt (9.5)

Let us recall some results on the optimal control of time varying systems.

Lemma 9.1. [13] Let there exists a scalar positive definite function V (x, t) such that

lim
t→∞

V (x, t) = 0 which satisfies

min
u(t)∈Ωu

{
∂V

∂x
Ac(θ) +

∂V

∂t
+ J(t)

}
= 0 (9.6)

The control algorithm u(t) = u∗(x, t) ∈ Ωu obtained from (9.6) ensures closed-loop

stability and the optimal value of the cost function (9.5) as J∗ = J(x0, t0) = V (x(0), t0).

Equation (9.6) is known as the Bellman-Lyapunov equation and function V (x, t) which

satisfies (9.6) is the Lyapunov function. For a particular structure of the Lyapunov

function the optimal control algorithm reduces from ”if and only if” to ”if”, and for

switched systems, robust control and so on to a guaranteed cost.

Definition 9.1. Consider system (9.1) and controller (9.3). If there exist a control

law u∗(x, t) and a positive scalar J∗ such that the respective closed-loop system (9.4) is

stable and the value of the closed-loop cost function (9.5) satisfies J ≤ J∗, then J∗ is

said to be the guaranteed cost and u∗(x, t) is said to be the guaranteed cost control law

for system (9.4).
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Definition 9.2. [4] The switched linear closed-loop system (9.4) is said to be quadrat-

ically stabilizable via output feedback if there exists a Lyapunov function of the form

V = x(t)TPx(t), P > 0, a positive number ε > 0 and a arbitrary switching rule σ such

that
dV

dt
≤ −εx(t)Tx(t) (9.7)

Definition 9.3. The switched linear closed-loop system (9.4) is said to be multiple

quadratically stabilizable via output feedback if there exists a Lyapunov function of the

form V (θ) = x(t)TP (θ)x(t), P (θ) > 0, a positive number ε > 0 and a arbitrary switching

rule σ such that
dV (θ)

dt
≤ −εx(t)Tx(t) (9.8)

Lemma 9.2. [14], [3] Consider a closed-loop system (9.4) with control algorithm (9.3).

Control algorithm (9.3) will be a cost guaranteed algorithm if there exists a positive

scalar ε such that for the time derivative of the positive definite Lyapunov function the

following condition holds

Be = min
u(t)∈Ωu

{
∂V

∂x
Ac(θ) +

∂V

∂t
+ J(t)

}
≤ −εx(t)Tx(t) (9.9)

when ε→ 0.

The following lemma plays an important role in the next development [15]

Lemma 9.3. Consider a scalar quadratic function of θi

f(θ) = a0 +

p∑
i=1

aiθi +

p∑
i=1

p∑
j=i

bijθiθj (9.10)

and assume that f(θ) is multiconvex, that is

∂2f(θ)

∂θ2
i

≥ 0, i = 1, 2, . . . , p (9.11)

then f(θ) is negative in the hyper rectangle θi ∈ 〈0, 1〉, i = 1, 2, . . . , p, if and only if it

takes negative values at the corners, that is if and only if f(θ) < 0 for θi = 0 or θi = 1,

i = 1, 2, . . . , p.

9.3 Switched controller design

In this paragraph two methods of switched controller design for linear continuous-time

invariant systems are presented. The first method is connected with the notion of

quadratic stability with respect to θ. We will assume that the rate of θ change is

infinite. Most of the literature on switched controller design concentrates on the case,

where switching can occur immediately, thus the rate of change of the switching signal

is infinite (ideal switching). In some real cases the rate of change of the switching signal

119



Novel approach to switched controller design for linear systems (Paper 6)

is finite (non ideal switching). This assumption will be used in the second approach

to obtain the switched controller design procedure. In the references on the design of

switched controllers for continuous-time systems there are no solution for the case of a

finite rate of change of switching signal. In this paper we for the first time set up the

case of the finite rate of change of the switching signal using the multi quadratic stability

approach to the closed loop switched systems. In the proposed approach to the switching

controller design for continuous time systems there is no need to use the approach of the

”dwell-time” [5, 6], which very complicated the switched controller design procedure.

9.3.1 Quadratic stability approach

The quadratic stability approach to the design of the switched controller for continuous

and discrete-time systems is well established. Because of the new model for continuous

time systems (9.1) in this part of the paper the proposed method is connected with the

notion of quadratic stability with respect to θ. We will assume that the rate of θ change

is infinite (ideal switching). From (9.9) the following lemma is obtained.

Lemma 9.4. Closed-loop Ac(θ) is quadratically stable with guaranteed cost if there exists

a positive definite Lyapunov matrix P such that the following inequality holds

ATc (θ)P + PAc(θ) +Q+ CTF (θ)TRF (θ)C ≤ 0 (9.12)

Substituting Ac(θ) (9.4) to (9.12) and using Lemmas 9.2 and 9.3 the following quadratic

stability conditions are obtained.

Theorem 9.1. Closed-loop system (9.4) is quadratically stable with guaranteed cost if

there exists a Lyapunov matrix P > 0 and matrices Q ≥ 0, R > 0 such that for an

arbitrarily switching rule σ the following matrix inequalities hold

a.)

(A0 +B0F0C)TP + P (A0 +B0F0C)

+Q+ CTF T0 RF0C = M0 ≤ 0
(9.13)

b.)

M0 +Mi +Mii ≤ 0, i = 1, 2, . . . , p (9.14)

where

Mi = (Ai +B0FiC +BiF0C)TP

+ P (Ai +B0FiC +BiF0C)

+ CTF Ti RF0C + CTF T0 RFiC

(9.15)

and

Mii = (BiFiC)TP + PBiFiC + CTF Ti RFiC (9.16)
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c.)

Mii ≥ 0, for i = 1, 2, . . . , p (9.17)

provided that θi = 0 or θi = 1

Proof

Proof is based on (9.9), Lemma 9.2 and Lemma 9.3 and goes the same line as proof of

Theorem 9.2.

Equation (9.14) implies that for stability analysis of the switched system we have ob-

tained linear matrix inequalities (LMI) but for the switched controller design we have

obtained bilinear matrix inequalities (BMI).

9.3.2 Multiple Lyapunov function approach

In this subsection we will assume that for some realistic cases the switching signal rate

of change is finite (non ideal switching). As we mentioned above in the references,

there is no solution for these cases. The obtained results for a finite rate of change of

switching signal open the new possibilities for the designer (practical realization) and

for the theory of the switched controller design procedure, i.e., the design of a switched

robust controller, design of a switched controller for some type of nonlinear systems and

so on. Specifically

• for switching parameters it holds
∑p

i=1 θi = 1,

θi ∈ 〈0 1〉 ∈ Ωθ.

• the rate of switching parameter variation θ̇i is well defined at all times and satisfies

known boundaries

θ̇i ∈ Ωt =
{
θ̇i ∈

〈
θ̇i, θ̇i

〉
, i = 1, 2, . . . , p

}
(9.18)

p∑
i=1

θ̇i = 0.

Main results for the switched controller design using the multiple quadratic stability

approach are given in the next theorem.

Theorem 9.2. Closed-loop system (9.4) is multiple quadratically stable with guaranteed

cost if there exist p+ 1 symmetric matrices P0, P1, . . . , Pp such that P0 +
∑p

i=1 Piθi > 0

is positive definite for all switching parameters θi ∈ Ωθ, θ̇i ∈ Ωt switched controller

parameters F (θ) satisfying

W (θ) ≤ 0

Wii ≥ 0, i = 1, 2, . . . , p
(9.19)

for an arbitrary switching rule σ.
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where

W (θ) = W0 +

p∑
i=1

Wiθi +

p∑
i=1

p∑
j=1

Wijθiθj

W0 =

[
w110 w120

wT120 w220

]
;Wi =

[
w11i w12i

wT12i w22i

]

Wij =

[
w11ij w12ij

wT12ij w22ij

]
w110 = N1 +NT

1 , w11i = w11ij = 0

w120 = P0 +N2 −NT
1 Ac0, w12i = Pi +N2 −NT

1 Aci

w12ij = N2 −NT
1 Acij

w220 =

p∑
k=1

Pkθ̇k −NT
2 Ac0 −ATc0N2 +Q+ CTF T0 RF0C

w22i = −NT
2 Aci −ATciN2 + CTF T0 RFiC + CTF Ti RF0C

w22ij = −NT
2 Acij −ATcijN2 + CTF Ti RFjC + CTF Tj RFiC

Ac0 = A0 +B0F0C, Aci = Ai +B0FiC +BiF0C

Acij = BiFjC

Proof

For the first derivative of the Lyapunov function V (θ) = x(t)TP (θ)x(t) one obtains

dV (θ)

dt
= ẋ(t)TP (θ)x(t) + x(t)TP (θ̇)x(t) + x(t)TP (θ)ẋ(t) =

[ẋ(t)T x(t)T ]

[
0 P (θ)

P (θ) P (θ̇)

]
[ẋ(t)T x(t)T ]T

where

P (θ̇) =

p∑
i=1

Piθ̇i ≤
p∑
i=1

Piθ̇i

assuming Pi > 0, i = 1, 2 . . . , p. For closed-loop system (9.4) one can write (x(t) = x)

[ẋTNT
1 + xTNT

2 ][ẋ−Ac(θ)x] + ([ẋTNT
1 + xTNT

2 ][ẋ−Ac(θ)x])T = 0 (9.20)

where N1, N2 ∈ Rn×n are auxiliary matrices. Summarizing the above two equations, for

the first derivative of the Lyapunov function it holds

dV (θ)

dt
= [ẋT xT ]

[
u11 u12

uT12 u22

]
[ẋT xT ]T (9.21)

where

u11 = NT
1 +N1, u12 = P (θ) +N2 −NT

1 Ac(θ),
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u22 = P (θ̇)−NT
2 Ac(θ)−Ac(θ)TN2

Substituting control algorithm (9.3) to system performance (9.5) for J(t) one obtains

J(t) = xT (Q+ CTF (θ)TRF (θ)C)x (9.22)

Rewriting the Bellman-Lyapunov equation (9.9) to the form

Be =

{
dV (θ)

dt
+ J(t)

}
≤ 0 (9.23)

or using equations (9.21) and (9.22) for Be it holds

Be =

[
ẋ

x

]T [
u11 u12

uT12 u22 +Q+ CTF (θ)TRF (θ)C

][
ẋ

x

]
(9.24)

Inequalities (9.23), (9.9) hold if the inner matrix of (9.24) is negative definite (semidef-

inite), that is

W (θ) =

[
u11 u12

uT12 u22 +Q+ CTF (θ)TRF (θ)C

]
≤ 0 (9.25)

Due to the quadratic function of W (θ) with respect to θ, Lemma 9.2 gives the stability

conditions in the form of (9.19) which proves the sufficient stability conditions of The-

orem 9.2.

For the switched controller design procedure the last term of W (θ) needs to be symmet-

rized as follows
p∑
i=1

p∑
j=1

Wijθiθj =

p∑
i=1

Wiiθ
2
i + (9.26)

p∑
i=1

p∑
j>i

(Wij +Wji)θiθj

where

Wii =

[
0 −NT

1 Acii
ATciiN1 −NT

2 Acii −ATciiN2 + CTF Ti RFiC

]
(9.27)

Remarks:

1. Note that the dwell-time determines the minimal time interval between switching.

If the real switching time interval is greater, T ≥ Td, the switched controller design

procedure for arbitrarily switching proposed in [5, 6] becomes more complicated

and conservative. Previously consideration imply that for arbitrarily switching al-

gorithm the number of active switching plant mode generate the value of switching

variable σ to determine which controller will be active. Switched controllers para-

meters calculation are made off-line by minimizing a given performance. Dwell-

time switching is another switching algorithm which in real time (on-line) ”t”

requires an algorithm capable of minimizing some performance like output estim-

ation error over the switching controllers. As a results of minimization dwell-time
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switching logic generate the switching variable σ to determine which controller will

be active in time ”t” [9].

2. To obtain a feasible solution, in the switched controller design procedure proposed

in the paper one can use a free and open source BMI solver Penlab.

9.4 Examples

The first example is taken from [16]. This plant has been constructed to include the

technical challenge of the control of models in practice such as models like the air in-

duction system of a turbocharged diesel engine. After a small simplification one obtains

a simple linear time-varying plant with parameter varying coefficients

ẋ(t) = a(α)x(t) + b(α)u(t)

y(t) = x(t)
(9.28)

where α(t) ∈ R is an exogenous signal that changes the parameters of the plant as

follows

a(α) = −6− 2

π
arctan

( α
20

)
b(α) =

1

2
+

5

π
arctan

( α
20

) (9.29)

Let the problem be to design a switched PI controller which will guarantee the closed-

loop stability and guaranteed cost for system (9.28) where α(t) is changing in steps

between 0, 30 and 100. In these working points the calculated transfer functions are as

follows

Gs1|α=0 = 0.5
s+6 , Gs2|α=30 = 2.064

s+6.626

Gs3|α=100 = 2.686
s+6.874 ,

(9.30)

We transform the above transfer functions to the time domain to obtain a gain schedul-

ing model in the form (9.1). Matrices Ai, Bi, i = 0, 1, 2, . . . , p for the case i = 0

calculated as middle values of all corresponding matrices and for i = 1, 2, . . . , p one can

use the standard approach. The obtained model is extended by one state variable for

PI controller design. The extended model is given as follows

A0 =

[
−6.5 0

1 0

]
, A1 =

[
0.5 0

0 0

]
,

A2 =

[
−0.126 0

0 0

]
, A3 =

[
−0.374 0

0 0

]
,

B0 =

[
1.75

0

]
, B1 =

[
−1.25

0

]
,
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B2 =

[
0.314

0

]
, B3 =

[
0.936

0

]
,

C =

[
1 0

0 1

]
, D = 0

Using Theorems 9.1 and 9.2 with weighting matrices Q = qI, q = 1 × 10−6, R = rI,

r = 1 and ρU = 1 × 107, ρL = 1 × 10−5 which are the upper/lower constraint of the

Lyapunov matrix ( ρLI < P (θ) < ρUI), θ̇i = 1000 [1/s] is the maximal rate of switched

parameter change for multi-quadratic stability approach and with θ ∈ 〈0, 1〉 we obtain

switched controllers in the form (9.3) where for the case of quadratic stability (Theorem

9.1) one has

F0 = [ −0.8213 −5.2172 ] = [−0.8213− −5.2172
s ]

F1 = [ −0.4868 −3.0799 ]

F2 = [ −2.6625 −16.8453 ]

F3 = [ 0.8072 5.1071 ]

(9.31)

and for the case of multi-quadratic stability approach (Theorem 9.2) one has

F0 = [ −0.3412 −10.9588 ]

F1 = [ −0.0475 −0.3355 ]× 10−8

F2 = [ 0.0186 0.1315 ]× 10−7

F3 = [ 0.0637 0.4492 ]× 10−8

(9.32)

In simulations α will be switched between values 0, 30 and 100 and a particular arbit-

rarily switching algorithm in simulations is shown in Figs. 9.3 and 9.5. The switched

parameters are calculated from signal α and switched with a maximal rate of change

θ̇i. Simulation results (Figs. 9.1, 9.2 and 9.3) confirm that Theorems 9.1 and 9.2 hold,

thus the closed loop switched system is stable for a prescribed rate of switching signal

change.

Figure 9.1: Simulation results w(t), y(t) with switched controller (9.31) – QS

Other switched controllers are designed using Theorems 9.1 and 9.2 with weighting

matrices Q = qI, q = 10, R = rI, r = 1, ρU = 1× 107, ρL = 1× 10−5, θ̇i = 2000 [1/s] is

the maximal rate of switched parameters change for multi-quadratic stability approach

and with θ ∈ 〈0, 1〉. The obtained controllers are in the form (9.3), where for the case

of quadratic stability (Theorem 9.2) one has

BMI solver failed.
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Figure 9.2: Simulation results w(t), y(t) with switched controller (9.32) – MPQS

Figure 9.3: Calculated switched parameters θ(t) and the switching signal α(t) for the

case of θ̇i = 1000 [1/s]

and for the case of multi-quadratic stability approach (Theorem 9.2) one has

F0 = [ −540.8653 −1.3937 ]

F1 = [ −0.2596 −0.0003 ]× 10−10

F2 = [ 0.1033 0.0001 ]× 10−9

F3 = [ 0.3467 0.0005 ]× 10−10

(9.33)

For this case, in simulations α will be switched between the same values 0, 30 and 100

as shown in Fig. 9.5. The switched parameters are calculated from this signal and

switched with maximal rate of change θ̇i = 2000 [1/s]. Simulation results (Figs. 9.4,

9.5) confirm that the multi-quadratic stability approach is less conservative than the

quadratic stability approach. This example implies that for higher values of weighting

matrix Q = qI, q > 0.1 (higher weight for quality) quadratic stability with BMI solver

fails but with the multi-quadratic stability approach we can obtain the controller up to

q = 15.

The second example is borrowed from [17]. Consider a simplified manual transmission

model

ẋ1 = x2

ẋ2 = [−a(x2)/v + u]/(1 + v)
(9.34)
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Figure 9.4: Simulation results w(t), y(t) with switched controller (9.33) – MPQS

Figure 9.5: Calculated switching parameters θ(t) and the switching signal α(t) for

the case of θ̇i = 2000 [1/s]

where x1 is the ground speed, x2 is the acceleration, u ∈ 〈0, 1〉 is the throttle position,

and v ∈ {1, 2, 3, 4} is the gear shift position. Function a(.) is positive for a positive

argument. Model (9.34) can be transformed to this form

[
ẋ1

ẋ2

]
︸ ︷︷ ︸

ẋ

=

[
0 1

0 −a
v+v2

]
︸ ︷︷ ︸

A

[
x1

x2

]
︸ ︷︷ ︸

x

+

[
0
1

1+v

]
︸ ︷︷ ︸

B

u (9.35)

Substituting a = 5 and v = [1, 2, 3, 4] we can transform (9.35) to the form (9.1)

A0 =

[
0 1

0 −1

]
, A1 =

[
0 0

0 −1.5

]

A2 =

[
0 0

0 0.1667

]
, A3 =

[
0 0

0 0.5833

]

A4 =

[
0 0

0 0.75

]
, B0 =

[
0

0.3208

]

B1 =

[
0

0.1792

]
, B2 =

[
0

0.0125

]
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B3 =

[
0

−0.0708

]
, B4 =

[
0

−0.1208

]

C =

[
1 0

0 1.75

]
Using Theorems 9.1 and 9.2 with weighting matrices Q = qI, q = 0.1, R = rI, r = 208

and ρU = 1 × 105, ρL = 1 × 10−5, θ̇i = 1000 [1/s] we obtain switched controller in the

form (9.3) where for the case of quadratic stability (Theorem 9.1) one has

BMI solver failed. (9.36)

and for the case of multi-quadratic stability approach (Theorem 9.2) one has

F0 = [ 24.0495 76.9511 ]

F1 = [ −25.1832 −80.2151 ]

F2 = [ −24.8145 −79.0407 ]

F3 = [ −24.6836 −78.6237 ]

F4 = [ −24.5773 −78.2853 ]

(9.37)

Figure 9.6: Simulation results w(t), y(t) with switched controller (9.37) – MPQS

Figure 9.7: Calculated switching parameters θ(t) and the controller output with
switched controller (9.37) – MPQS

In the simulations we switched the gear shift as follows v = 1 if x1 ∈ 〈0, 0.3〉, v = 2 if x1 ∈
(0.3, 0.6〉, v = 3 if x1 ∈ (0.6, 0.8〉 and v = 4 if x1 ∈ (0.8,∞), and the switching rate of v is

established with θ̇i = 10 [1/s]. From the simulation results (Figs. 9.6 and 9.7) it follows
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that the theorems holds and that the multi-parameter quadratic stability approach is

less conservative than the quadratic stability and that with the weighting matrices we

can affect the performance quality and tune the system to the desired conditions.

Third example. Control systems over data networks are commonly referred to as net-

worked control systems (NCSs). For the NCSs, the sampled data and controller signals

are transmitted through a network. As a result, it leads to a network-induced delay

in a networked control closed-loop system. The existence of such a kind of delay in a

network-based control loop can induce instability or poor performance of control sys-

tems. Assume that a linear system with transfer function G(s) is integrated to NCSs

which inevitably leads to a change of the plant transfer function as G(s)e−Tds, where Td
is a variable plant time delay. The value of Td depends on the load of the communication

network. Assume that for four communication network loads one can define four middle

values of time delays Tdi, i = 1, 2, 3, 4.

For PI switched controller design and simulation we will use a laboratory model of a

DC-motor which is one of the real processes built for control education and research

at our institute. We have identified the DC motor system and the following transfer

function has been obtained

Sys =
0.0627s+ 1.281

2.081s2 + 2.506s+ 1
(9.38)

For the defined 4 middle values of the induced time delays Td = [0.1, 0.2, 0.3, 0.4] s and

using the first order Pade approximation we computed 4 plant transfer functions which

are transformed to the state space. The obtained 4 plant models are extended with one

state for the switched PI controller design. Finally one obtains the plant models in the

form (9.1)

A0 =


0 1 0 0

0 0 1 0

−5.0006 −13.0218 −11.6208 0

1 0 0 0

 , A1 =


0 0 0 0

0 0 0 0

−4.6005 −11.5382 −9.5832 0

0 0 0 0



A2 =


0 0 0 0

0 0 0 0

0.2001 0.5018 0.4168 0

0 0 0 0

 , A3 =


0 0 0 0

0 0 0 0

1.8001 4.5147 3.7498 0

0 0 0 0



A4 =


0 0 0 0

0 0 0 0

2.6003 6.5218 5.4168 0

0 0 0 0

 , B0 =


−0.0308

0.0498

4.1652

0

 , B1 =


−0.0002

0.5833

−4.5362

0



B2 =


−0.0002

−0.0261

2.1004

0

 , B3 =


0.0008

−0.2288

1.5999

0

 , B4 =


−0.0003

−0.3284

0.8360

0

 , C =

[
1 0 0 0

0 0 0 1

]
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For switched controller design, Theorem 9.2 with weighting matrices Q = qI, q = 0.01,

R = rI, r = 2 and ρU = 10, ρL = 1 × 10−5, θ̇i = 10 [1/s] will be used. The obtained

switched PI controller is the form (9.3)

The case of multi-quadratic stability approach (Theorem 9.2)

F0 = [ −0.3296 −0.1352 ]

F1 = [ −0.4460 −0.1981 ]

F2 = [ −0.0589 −0.0293 ]

F3 = [ −0.0217 −0.0106 ]

F4 = [ 0.1439 0.0908 ]× 10−10

(9.39)

Simulation results (Figs. 9.8, 9.9 and 9.10) confirm, that Theorem 9.2 holds. In the

simulation the switching algorithm (middle time delay) is shown in Fig. 9.10 from which

the scheduled parameters are calculated.

Figure 9.8: Simulation results w(t), y(t) with switched controller (9.39)

Figure 9.9: Switched Controller output (9.39)

Figure 9.10: Time delay changes
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9.5 Conclusion

The paper addresses the problem of the switched controller design with arbitrarily

switching algorithm which ensures the closed-loop stability and guaranteed cost for

a prescribed rate of change of system switching. A novel gain scheduling plant model

is presented for linear continuous-time invariant switched systems. The first proposed

method is connected with the notion of quadratic stability with respect to switched

parameter θ. In this case we assume that the rate of θ change is infinite. In some real

cases the rate of change of the switching signal is finite. This assumption was used in the

second approach to obtain the switched controller design procedure. The advantages of

the proposed method are:

• one can obtain less conservative results with respect to using the dwell-time ap-

proach,

• for the switched controller design there is no need to use the approach of the

”dwell-time” which markedly complicates the design procedure,

• the rate of the switching signal change can be prescribed by the designer which

opens the new possibilities for practical realizations and development of new the-

oretical approaches,

• the obtained design procedure for output/state feedback ensures the closed loop

stability of switched systems and guaranteed cost,

• the obtained design procedure can be implemented easily to the standard LMI or

BMI approaches,

• the obtained design procedure can be easily transformed to the case of robust

switched controller design for continuous-time switched systems with arbitrarily

switching.

Numerical examples illustrate the effectiveness of the proposed approach.
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10

Robust Switched Controller Design

for Nonlinear Continuous Systems

(Paper 7)

Abstract

A novel approach is presented to robust switched controller design for nonlinear

continuous-time systems under an arbitrary switching signal using the gain schedul-

ing approach. The proposed design procedure is based on the robust multi parameter

dependent quadratic stability condition. The obtained switched controller design pro-

cedure for nonlinear continuous-time systems is in at bilinear matrix form (BMI). The

properties of the obtained design are illustrated on simulation examples.

Keywords: Robust controller, Switched controller, Gain-scheduled controller, Continu-

ous time Nonlinear systems, Lyapunov function.

10.1 Introduction

Switched systems play an important role in the past decade. Motivation for studying

switched systems stems from two facts

• switched systems have numerous application in the control of real plants, and

• in real control, there are dynamical systems that cannot be stabilized by any

continuous static output/state feedback control law, but a stabilizing switching

control scheme can be found.

Therefore switched system stability and the controller design procedure are the most

important issues, especially for nonlinear systems. Stability under arbitrary switching
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is guaranteed by the existence of a common Lyapunov function for all switching subsys-

tems, [1], [2], [3], [4], [5], [6]. For switched linear systems, finding the common Lyapunov

function is relatively easy but for nonlinear systems it is difficult. A survey of switched

controller design for nonlinear systems can be found in [1], [2], [3], [7] and references

therein. Due to the switched controller design problems for continuous time nonlin-

ear systems in this paper we pursue the idea to use, instead of a nonlinear switched

plant model a switched gain-scheduled plant model and to design the robust switched

gain-scheduled controller guaranteeing closed-loop stability and guaranteed cost for all

operating points of the switched nonlinear system.

Gain scheduling control deals with systems subject to parametric variations, which in-

clude linear systems with time-varying parameters or nonlinear systems modeled by a

family of linear parameter-varying systems, [8]. Because of time-varying gain-scheduled

parameters many researches have tackled the design problem of the gain-scheduled con-

trollers for linear time-varying system (LPV) using linear matrix inequalities (LMI)

and the Lyapunov function approach [8], [9], [10], [11]. Reviews of the gain-scheduled

controller design can be found in [12], [13].

In this paper a method is proposed of robust switched controller design for nonlinear

continuous time switched systems using the gain scheduling approach. There are only

some results in the field of continuous time switched gain-scheduled controller design for

continuous time systems [14], [15], [16] and stabilization of switched continuous time lin-

ear systems [17], [18]. Representative are two last references [17], [18]. In the first paper

the authors introduce the notion of the dwell-time Td (minimal time interval between

switching) into the switched controller design procedure. In the stability analysis con-

dition of switched systems the dwell-time is included to the term eAcTd (Ac-closed-loop

matrix (10.4)). In such a way the proposed design procedure for stability analysis and

switching controller design for the real switching time interval T > Td becomes conservat-

ive. The ”dwell-time term” for continuous-time systems very complicated the switched

controller design procedure. In the paper [18] sufficient conditions are given for the sta-

bility of linear systems with dwell-time and with polytopic type parameter uncertainty.

Lyapunov functions, in quadratic form for each mode, which are non-increasing at the

switching instants are assigned to each mode. During the dwell-time this function varies

piecewise linearly in time after switching occurs. The proposed method was applied to

stabilization via a state feedback both for nominal and uncertain cases. Since within the

dwell-time the Lyapunov function varies piecewise linearly and the real switching time

interval T > Td, the switching controller design procedure become rather conservative.

The switched controller design procedure for continuous-time systems proposed in this

paper does not use the approach of the ”dwell-time”, therefore there is no such drawback

as mentioned in the above references.

Vast references on the switched controller design are concentrated on the case where

switching can occur immediately (ideal case), for a large number of switched system the

realistic case is where the rate of change of the switching signal is finite (non-ideal case).

A assumption of a non-ideal case of the switching variable will be used in this paper

which gives other opportunities for controller designer. Some results about the stability
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of a class of uncertain linear varying systems (transform to switched systems) can be

found in [19].

The remainder of the paper is organized as follows. In Section 10.1 and 10.2 we present

the class of switched gain-scheduled control systems. In Section 10.3 we address the

output feedback PI switched gain-scheduled robust controller design procedure for con-

tinuous time gain-scheduled plant model. Finally, in Section 10.4, the proposed design

procedure is demonstrated on a simple example.

Our notation is standard, P ∈ Rm×n denotes the set of real m × n matrices, P > 0

(P ≥ 0) ∈ Rn×n is a real symmetric, positive definite (semidefinite) matrix. σ ∈ S

indicates the arbitrary switching algorithm and σ + 1 is the first next mode to mode

σ. ”*” in matrices denotes the respective transposed (conjugate) term to make matrix

symmetric. Im is an m×m identity matrix, 0m denotes the zero matrix.

10.2 Problem statement and preliminaries

10.2.1 Uncertain LPV plant model for switched systems

Consider family of nonlinear switched systems

ż = fσ(z, v, w) σ ∈ S = {1, 2, . . . , N}
y = h(z)

(10.1)

where z ∈ Rn is the state, the input v ∈ Rm, the output y ∈ Rl, exogenous input w ∈ Rk

which captures parametric dependence of the plant (10.1) on exogenous input. The

arbitrary switching algorithm σ ∈ S is a piecewise constant, right continuous function

which specifies at each time the index of the active system, [20]. Assume that f(.) is

locally Lipschitz for every σ ∈ S. Consider that the number of equilibrium points for

each switching modes is equal to p, that is for each mode σ ∈ S the nonlinear system can

be replaced by a family of p linearized plant. For more details how to obtain the gain-

scheduled plant model see excellent surveys [12], [13]. To receive the model uncertainty of

the gain-scheduled plant it is necessary to obtain other family of linearized plant models

around the p equilibrium points. Finally, one obtains the gain-scheduled uncertain plant

model in the form

ẋ = Aσ(ξ, θ)x+Bσ(ξ, θ)u σ ∈ S
y = Cx

(10.2)

where x = z − ze, u = v − ve, y = y − ye, (ze, ve, ye) define the equilibrium family for

plant (10.1). Assume, that for i − th equilibrium point one obtain the sets x ∈ Xi,

u ∈ Ui, y ∈ Yi, i = 1, 2, . . . , p. Summarizing above sets we get x ∈ X =
⋃p
i=1Xi, u ∈
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U =
⋃p
i=1 Ui, y ∈ Y =

⋃p
i=1 Yi.

Aσ(ξ, θ) = Aσ0(ξ) +

p∑
j=1

Aσj(ξ)θj ∈ Rn×n

Bσ(ξ, θ) = Bσ0(ξ) +

p∑
j=1

Bσj(ξ)θj ∈ Rn×m
(10.3)

Matrices Aσj(ξ), Bσj(ξ), j = 0, 1, 2, . . . , p belong to the convex set a polytope with K

vertices that can formally defined as

Ωσ =

{
Aσj(ξ), Bσj(ξ) =

K∑
i=1

(Aσij , Bσij) ξi

j = 0, 1, 2, 3, . . . , p,

K∑
i=1

ξi = 1, ξi ≥ 0, ξi ∈ Ωξ

} (10.4)

where ξi, i = 1, 2, . . . ,K are constant or possible time-varying but unknown parameters,

Aσij , Bσij , C are constant matrices of corresponding dimensions, θ ∈ Rp is a vector of

known constant or time-varying gain-scheduled parameter. Assume that both lower and

upper bounds are available, that is

θ ∈ Ωs = {θ ∈ Rp : θj ∈ 〈θj , θj〉}
θ̇ ∈ Ωt = {θ̇ ∈ Rp : θ̇j ∈ 〈θ̇j , θ̇j〉}

(10.5)

10.2.2 Problem formulation

For each plant mode consider the uncertain gain-scheduled LPV plant model in the form

(10.2), (10.3) and (10.4)

ẋ =

Aσ0(ξ) +

p∑
j=1

Aσj(ξ)θj

x+

Bσ0(ξ) +

p∑
j=1

Bσj(ξ)θj

u

y = Cx

(10.6)

For a robust gain-scheduled I part controller design, the states x of (10.6) need to

be extended in such a way that a static output feedback control algorithm can provide

proportional (P) and integral (I) parts of the designed controller, for more detail see [21].

Assume that system (10.6) allows PI controller design with a static output feedback. The

feedback control law is considered in the form

u = Fσ(θ)y =

Fσ0 +

p∑
j=1

Fσjθj

Cx (10.7)

where Fσ(θ) is the static output feedback gain-scheduled controller for mode σ. The

closed-loop system is

ẋ = Aσc(ξ, θ, α)x (10.8)
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where

Aσc(ξ, θ, α) =

N∑
σ=1

(
Aσ(ξ, θ) +Bσ(ξ, θ)Fσ(θ)C

)
ασ =

N∑
σ=1

Aσ(ξ, θ)ασ

αT = [α1, α2, . . . , αN ],
N∑
σ=1

ασ = 1,
N∑
σ=1

α̇σ = 0

αj = 1 when σj is active plant mode, else αj = 0. Assume α ∈ Ωα, α̇ ∈ Ωd.

To access the system performance, we consider an original weighted scheduled quadratic

cost function

J =

∫ ∞
t=0

J(t)dt (10.9)

where J(t) = xTQ(θ)x+ uTRu and

Q(θ) = Q0 +

p∑
j=1

Qjθj , Qj ≥ 0, R > 0

.

Definition 10.1. Consider a stable closed-loop switched system (10.8) with N modes.

If there is a control algorithm (10.7) and a positive scalar J∗ such that the closed-loop

cost function (10.9) satisfies J ≤ J∗ for all θ ∈ Ωs, α ∈ Ωα, then J∗ is said to be a

guaranteed cost and ”u” is said to be a guaranteed cost control algorithm for arbitrary

switching algorithm σ ∈ S.

Theorem 10.1. [22] Control algorithm (10.7) is the guaranteed cost control law

for the switched closed-loop system (10.8) if and only if there is Lyapunov function

V (x, ξ, θ, α) > 0, matrices Q(θ), R and gain matrices Fσk, k = 0, 1, . . . , p such that for

σ ∈ S the following inequality holds

Be =
dV (x, ξ, θ, α)

dt
+ J(t) ≤ −εxTx, ε→ 0 (10.10)

10.3 Main results

This section formulates the theoretical approach to the robust switched gain-scheduled

controller design with control law (10.7) which ensure closed-loop multi parameter de-

pendent quadratic stability and guaranteed cost for an arbitrary switching algorithm

σ ∈ S. Assume that in Theorem 10.1 the Lyapunov function is in the form

V (x, ξ, θ, α) = xTP (ξ, θ, α)x (10.11)

where the Lyapunov multi parameter-dependent matrix is

P (ξ, θ, α) =

K∑
i=1

P0i +

N∑
σ=1

Pσ0i +

p∑
j=1

Pσijθj

ασ

 ξi (10.12)
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Time derivative of the Lyapunov function(10.11) is

V̇ (.) = [ẋT xT ]

[
0 P (ξ, θ, α)

P (ξ, θ, α) Ṗ (ξ, θ, α)

][
ẋ

x

]
(10.13)

where

Ṗ (.) =
K∑
i=1

N∑
σ=1

DPσiασξi (10.14)

DPσi =

N∑
σ=1

Pσ0iα̇σ +

p∑
j=1

Pσij θ̇j +

p∑
j=1

N∑
σ=1

Pσijα̇σθj

Using equality

(2N1ẋ+ 2N2x)T

(
ẋ−

N∑
σ=1

Aσ(ξ, θ)ασx

)
= 0 (10.15)

equation (10.13) can be rewritten as

dV (.)

dt
=

N∑
σ=1

[
ẋT xT

]
Lσ(ξ, θ)

[
ẋ

x

]
(10.16)

Lσ(ξ, θ) = {lσ(i, j)}2×2

lσ(1, 1) = NT
1 +N1

lσ(1, 2) = −NT
1 Aσ(ξ, θ) +N2 +

K∑
i=1

P0i + Pσ0i +

p∑
j=1

Pσijθj

 ξi

lσ(2, 2) = −NT
2 Aσ(ξ, θ)−ATσ (ξ, θ)N2 +

K∑
i=1

DPσiξi

where N1, N2 ∈ Rn×n are auxiliary matrices.

On substituting (10.7) to (10.9) one obtains

J(t) = xTS(θ)x (10.17)

where

S(θ) = S0 +

p∑
j=1

Sjθj +

p∑
j=1

p∑
k>j

Skjθkθj +

p∑
k=1

Skkθ
2
k

S0 = Q0 + CTF Tσ0RFσoC

Sj = Qj + CT
(
F Tσ0RFσj + F TσjRFσ0

)
C

Sjk = CT
(
F TσjRFσk + F TσkRFσj

)
C

Skk = CTF TσkRFσkC
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The switched model plant (10.8) can be rewritten to the form

Aσ(ξ, θ) = M0(ξ) +

p∑
j=1

Mj(ξ)θj +

p∑
j=1

p∑
k>j

Mjk(ξ)θjθk+ (10.18)

p∑
k

Mkk(ξ)θ
2

where

M0(ξ) = Aσ0(ξ) +Bσ0(ξ)Fσ0C

Mj(ξ) = Aσj + (Bσ0(ξ)Fσj +Bσj(ξ)Fσ0)C

Mjk(ξ) = (Bσj(ξ)Fσk +Bσk(ξ)Fσj)C

Mkk(ξ) = Bσk(ξ)FσkC

Due to Theorem 10.1 the closed-loop switched gain-scheduled system is multi parameter

dependent quadratically stable with guaranteed cost for σ ∈ S, ξi, i = 1, 2, . . . ,K if the

following inequalities hold

Be = [ẋT xT ]W (ξ, σ, θ)[ẋT xT ]T ≤ 0 (10.19)

where W (ξ, σ, θ) = {wij(σ, ξ)}2×2

w11(σ, ξ) = NT
1 +N1

w12(σ, ξ) =
∑K

i=1

(
P0i + Pσ0i +

∑p
j=1 Pσijθj

)
ξi

− NT
1 Aσ(ξ, θ) +N2

w22(σ, ξ) = −NT
2 Aσ(ξ, θ)−Aσ(ξ, θ)TN2

+
∑K

i=1DPσiξi + S(θ)

Inequality (10.19) implies :

• for all σ ∈ S the inequality is linear with respect to uncertain parameter ξi,

i = 1, 2, . . . ,K,

• for all σ ∈ S the inequality is a quadratic function with respect to the gain-

scheduled parameters θi, i = 1, 2, . . . , p.

For the next development the following theorem is useful.

Theorem 10.2. [23] Consider a scalar quadratic function of θ ∈ Rp

f(θ) = a0 +

p∑
j=1

ajθj +

p∑
j=1

p∑
k>j

ajkθjθk +

p∑
k

akkθ
2
k (10.20)
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and assume that if f(θ) is multiconvex, that is

δ2f(θ)

δθ2
k

= 2akk ≥ 0, k = 1, 2, . . . , p

then f(θ) is negative definite in the hyper rectangle (10.5) if and only if it takes negative

values at the vertices of (10.5), that is if and only if f(θ) < 0 for all vertices of the set

given by (10.5).

Due to (10.14), (10.17) and (10.18) the robust stability conditions of switched system

can be rewritten as

W (ξ, σ, θ) =

N∑
σ=1

L(θ, ξ)ασ =

N∑
σ=1

(Wσ0(ξ)+

+

p∑
j=1

Wσj(ξ)θj +

p∑
j=1

p∑
k>j

Wσjk(ξ)θjθk+

+

p∑
k=1

Wσkkθ
2
k)ασ ≤ 0

(10.21)

where Wσ0(ξ) = {wσ0ij}2×2, Wσj(ξ) = {wσjik}2×2

wσ011 = NT
1 +N1

wσ012 = −NT
1 M0(ξ) +N2 +

∑K
i=1(P0i + Pσ0i)ξi

wσ022 = −NT
2 M0(ξ)−MT

0 (ξ)N2 + S0+

+
∑K

i=1

(
Pσ0iα̇σ +

∑p
j=1 Pσij θ̇j

)
ξi

wσj11 = 0; wσj12 = −NT
1 Mj(ξ) +

∑K
i=1 Pσijξi

wσj22 = −NT
2 Mj(ξ)−Mj(ξ)

TN2 + Sj+

+
∑K

i=1

(∑N
σ=1 Pσijα̇σ

)
ξi

Wσjk(ξ) =

[
0 −NT

1 Mjk(ξ)
” ∗ ” −NT

2 Mjk(ξ)−Mjk(ξ)
TN2 + Sjk

]
Wσkk(ξ) =

[
0 −NT

1 Mkk(ξ)
” ∗ ” −NT

2 Mkk(ξ)−Mkk(ξ)
TN2 + Skk

]
The main results on the robust stability condition for the switched gain-scheduled control

system is given in the next theorem.

Theorem 10.3. Closed-loop switched system (10.8) is robust multi parameter dependent

quadratically stable with guaranteed cost if there is a positive definite matrix P (ξ, θ, α) ∈
Rn×n (10.12), matrices N1, N2 ∈ Rn×n, positive definite (semidefinite) matrices Q(θ),

R and gain-scheduled controller matrix Fσ(θ), such that for σ ∈ S

1.

Lσ(ξ, θ) < 0 (10.22)
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2.

Wσkk ≥ 0, σ ∈ S, θ ∈ Ωs, k = 1, 2, . . . , p

The proof of theorem sufficient conditions immediately follows from eqs. (10.12)-(10.21).

Notes.

• Lσ(θ, ξ) is linear with respect to uncertain parameter ξi, i = 1, 2, . . . ,K, it holds

Lσ(θ, ξ) =
∑K

i=1 Lσi(θ)ξi, therefore inequality (10.22) for each σ ∈ S split to K

inequalities of type Lσi(θ) < 0 and Wσikk ≥ 0.

• Eq. (10.12) implies that in dependence on the chosen structure of the Lyapunov

matrix P (ξ, θ, α) one should obtained different types of stability conditions from

quadratic to multi parameter dependent quadratic stabilities. Different types of

stability conditions determine the conservatism of the design procedure and the

rate of change of corresponding variables.

10.4 Example

Consider a simple nonlinear switched system with two modes as

σ = 1, ẋ = −asinx+ bu

σ = 2, ẋ = −acosx+ bu, y = x
(10.23)

where a ∈ 〈0.8, 1〉, when a = 0.8 then b = 1 and a = 1, b = 0.5. One can linearized

model (10.23) in the three working points x0 = {0, π/4, π/2}. For PI gain-scheduled

controller design the system state space needs to be increased, finally for matrices

A(σ, ξ, θ), B(σ, ξ, θ) one obtains

A(1, ξ, θ) =

{[
−0.4 0

1 0

]
+

[
0.117 0

0 0

]
θ1 +

[
−0.28 0

0 0

]
θ2

}
ξ1

+

{[
−0.5 0

1 0

]
+

[
0.14645 0

0 0

]
θ1 +

[
−0.35355 0

0 0

]
θ2

}
ξ2

B(1, ξ, θ) =

[
1
0

]
ξ1 +

[
0.5
0

]
ξ2

(10.24)

A(2, ξ, θ) =

{[
0.4 0
1 0

]
+

[
−0.287 0

0 0

]
θ1 +

[
−0.117 0

0 0

]
θ2

}
ξ1

+

{[
0.5 0
1 0

]
+

[
−.35955 0

0 0

]
θ1 +

[
−0.14645 0

0 0

]
θ2

}
ξ2

B(2, ξ, θ) =

[
1
0

]
ξ1 +

[
0.5
0

]
ξ2

(10.25)

C =

[
1 0
0 1

]
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For each mode, the robust gain-scheduled controller has been designed for the following

parameters Q0 = 0.01∗ I, Q1 = 0.001∗ I, Q2 = 0.005∗ I, R = I, max α̇σ = 1001
s (rate of

switching parameters changing) max θ̇j = 11
s maximal rate of gain-scheduled parameter

changes. Constraints for the Lyapunov matrix (10.12) are 0 < P (ξ, θ, α) < 1000 ∗ I.

The obtained first gain-scheduled controller parameters are:

σ = 1

R1 = −7.8434− 3.852

s
+

{
−4.794− 2.6287

s

}
θ1

+

{
0.3278 +

0.866

s

}
θ2

σ = 2

R2 = −13.8691− 6.3453

s
+

{
−8.0619− 4.7241

s

}
θ1

+ {0.4297 +
1.2511

s
}θ2

(10.26)

The maximal closed-loop eigenvalues for the case of θj = 0, j = 1, 2, . . . , p are

σ = 1,maxeig(CLS) = −0.4899

σ = 2,maxeig(CLS) = −0.4888

Under the same conditions other results have been obtained for the case of

max α̇σ = 300/s and max θ̇j = 5/s. The second gain-scheduled controller para-

meters are:

σ = 1

R1 = −7.1769− 2.0309

s
+

{
−1.2374 +

2.4355

s

}
θ1

+

{
4.9032− 2.7108

s

}
θ2

(10.27)

σ = 2

R2 = −3.9991− 1.7337

s
+

{
−02912 +

1.3464

s

}
θ1

+

{
1.1521− 1.4535

s

}
θ2

(10.28)

The maximal closed-loop eigenvalues for the case of θj = 0, j = 1, 2, . . . , p are

σ = 1,maxeig(CLS) = −0.2656

σ = 2,maxeig(CLS) = −0.5729

Note that the negative sign means a negative feedback. Simulation results for the two

designed gain-scheduled switched controller are given in Figs. 10.1-10.6
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Figure 10.1: Simulation results
w(t), y(t) with the first gain-scheduled

switched controller
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Figure 10.2: Simulation results
w(t), y(t) with second gain-scheduled

switched controller

Figure 10.3: Simulation results
w(t), y(t) with the first gain-scheduled

switched controller – zoomed

Figure 10.4: Simulation results
w(t), y(t) with second gain-scheduled

switched controller – zoomed

10.5 Conclusion

In the paper a novel switched robust gain-scheduled controller design procedure has been

proposed for switched control of nonlinear systems. The proposed method is based on

an uncertain gain-scheduled plant, multi parameter dependent Lyapunov function and

guaranteed cost. To access the system performance, we consider an original weighted

scheduled quadratic cost function which allowed to obtain different performance depend-

ence on the working points, which opens new possibilities for the controller designer. The
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Figure 10.5: Development of the
switching variable α1(t)

Figure 10.6: Development of the
switching variable α1(t)

obtained results, illustrated on examples, show the applicability of the designed switched

robust gain-scheduled controller and its ability to cope with model uncertainties. In the

paper several forms of parameter dependent/quadratic Lyapunov functions are proposed.

The obtained results are in the form of BMI. The proposed approach contributes to the

design tools for switched robust gain-scheduled controllers for nonlinear systems.
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11

Gain-Scheduled MPC Design

for Nonlinear Systems with Input

Constraints (Paper 8)

Abstract

A novel methodology is proposed for discrete model predictive gain-scheduled controller

design for nonlinear systems with input(hard)/output(soft) constraints for finite and

infinite prediction horizons. The proposed design procedure is based on the linear

parameter-varying (LPV) paradigm, affine parameter-dependent quadratic stability and

on the notion of the parameter-varying guaranteed cost. The obtained design procedure

is in the form of BMI. Numerical examples show the benefit of the proposed approach.

Keywords: Gain-scheduled controller, Predictive controller, Parameter-dependent Lya-

punov function, Quadratic gain-scheduled cost function, LPV systems, Nonlinear sys-

tems.

11.1 Introduction

The robust control theory is well established for linear systems but almost all real pro-

cesses are more or less nonlinear. If the plant operating region is small, one can use

the robust control approaches to design a linear robust controller where the nonlinear-

ities are treated as model uncertainties. However, for real nonlinear processes, where

the operating region is large, the above mentioned controller synthesis may be inap-

plicable. For this reason the controller design for nonlinear systems is nowadays a very

determinative and important field of research.

Gain scheduling is one of the most common used controller design approaches for non-

linear systems and has a wide range of use in industrial applications. Many of the
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early articles were associated with flight control [1, 2] and aerospace [3]. Then, gradu-

ally, this approach has been used almost everywhere in control engineering, which was

greatly helped with the introduction of LPV systems. Linear parameter-varying systems

are time-varying plants whose state space matrices are fixed functions of some vector

of varying parameters θ(t). They were introduced first by Jeff S. Shamma in 1988 to

model gain scheduling. Today the LPV paradigm has become a standard formalism in

systems and controls with lot of researches and articles devoted to analysis, controller

design and system identification of these models [4].

It is known that every real system contains some constraints and it is necessary to take

account of them in the controller design procedure. The basic solution to this problem

was to include some anti-windup techniques in gain scheduling [5, 6].

A more systematic approach which allowed new possibilities is the model predictive con-

trol (MPC). That is why MPC attracted a lot of practitioners and became one of the

most used advanced control techniques in industrial applications. More information can

be found in survey [7]. The underlying idea of MPC is to use the system model to predict

the future system behaviour and then to find an optimal system input by minimization

of a cost function. Although the MPC was successfully applied to a wide range of indus-

trial processes, it contains some limitations which are caused by the drawbacks in the

MPC formulation. In the standard MPC without modifications the closed-loop stability

is not guaranteed, not mention robust stability and the computational complexity of

QP (quadratic programming) solver in each sample time and the feasibility of the cost

function with constraints. For this reason, the MPC and the nonlinear MPC has re-

ceived much attention in this research area [8, 9]. In many articles the nonlinear system

is described by LPV approximation or by gain scheduling. In paper [10] one can find a

robust output feedback MPC design for LPV systems where the control law is computed

based on LMI at each sampling time. The authors in [11] presented an observer-based

controller for nonlinear systems, where the control law is generated using the Jacobian

linearization in conjunction with gain scheduling. In paper [12] one can find a stabilizing

scheduled output feedback MPC algorithm for constrained nonlinear systems with large

operating regions, where the authors design a set of local output feedback predictive

controllers with their estimated regions of stability covering the desired operating re-

gion, then on-line switches between them with achieving the nonlinear transitions with

guaranteed stability. Another MPC algorithm can be found for LPV systems in papers

[13] and [14]. Robust output feedback MPC using off-line LMI can be found in [15] and

off-line MPC based on gain scheduling for networked control system in a brief paper

[16].

The main motivation of our paper were our previous results in gain scheduling [17], [18],

[19] and the results from a stable model predictive control design [20]. Following the

literature in this paper we have proposed to combine the gain scheduling approaches

with the stable MPC design to obtain a new controller design procedure. In this paper

a novel static-output model predictive gain-scheduled controller design for finite and

infinite horizon is presented for discrete nonlinear systems, which will guarantee the
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closed-loop stability and performance quality with considering input/output constraints

and all this without on-line optimization in each sample time.

The sequel of the manuscript is organized as follows. In Section 11.2 we present problem

formulation and preliminaries. In Section 11.3 we address the main results which include

the model predictive gain-scheduled controller design procedure for nonlinear constrained

discrete-time systems for finite and infinite prediction horizon. Finally, in Section 11.4

the proposed design procedure is demonstrated on simple examples.

Our notations are standard, D ∈ Rm×n denotes the set of real m×n matrices. Im is an

m×m identity matrix and Zm denotes a zero matrix. If the size can be determined from

the context, we will omit the subscript. P > 0 (P ≥ 0) is a real symmetric, positive

definite (semidefinite) matrix.

11.2 Problem formulation and preliminaries

Consider a nonlinear plant x(k + 1) = F (x(k), u(k), θ(k)) which is identified in several

working points. The identified family of linear systems in discrete-time space is given as

follows

x(k + 1) = Ai x(k) +Bi u(k)

y(k) = Ci x(k) i = 1, 2, . . . N
(11.1)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the controller output, y(k) ∈ Rl is the

measured plant output vector at step k ∈ R+, matrices Ai, Bi, Ci, i = 1, 2, . . . , N are

system matrices with appropriate dimension and N is the number of identified plants

model. Assume that a known vector θ(k) ∈ Ω exists which captures the parametric

dependence of the linearized model (11.1) on the equilibrium (working) points of the

original nonlinear system.

11.2.1 Case of finite prediction horizon

The identified family of linear systems (11.1) for a given prediction and control horizon

Nk can be transformed to the following form [20]

z(k + 1) = Af i z(k) +Bf i v(k)

yf (k) = Cf i z(k) i = 1, 2, . . . N
(11.2)

where
zT (k) =

[
xT (k|k) xT (k + 1|k) · · · xT (k +Nk − 1|k)

]
vT (k) =

[
uT (k|k) uT (k + 1|k) · · · uT (k +Nk − 1|k)

]
yTf (k) =

[
yT (k|k) yT (k + 1|k) · · · yT (k +Nk − 1|k)

]
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Af i =


Ai 0 · · · 0
A2
i 0 · · · 0

...
...

. . . 0
Ai

Nk 0 · · · 0

 , Cf i =

Ci 0 · · · 0
0 Ci · · · 0
...

...
. . .

...
0 0 · · · Ci



Bf i =


Bi 0 · · · 0
AiBi Bi · · · 0
A2
iBi AiBi · · · 0
...

...
. . .

...
ANk−1
i Bi A

Nk−2
i Bi · · · Bi


and x(k + j|k) is the step ahead prediction of the state, calculated in sample time k.

From the family of linear systems (11.2) one obtains [17] a gain-scheduled plant model

in the form

z(k + 1) = Af a(θ(k)) z(k) +Bf a(θ(k)) v(k)

yf (k) = Cf a z(k)
(11.3)

where Cf a = Cf 1 = Cf 2 = . . . = CfN and

Af a(θ(k)) = Af a0
+

p∑
i=1

Af aiθi(k)

Bf a(θ(k)) = Bf a0
+

p∑
i=1

Bf aiθi(k)

and Af ai, Bf ai, i = 0, 1, . . . , p − 1 are system matrices with appropriate dimension,

Af ap = 0, Bf ap = 0, θ(k)T = [θ1(k), θ2(k), . . . , θp−1(k)] ∈ Ω is the vector of p − 1

known independent scheduling parameters at step k and θp ∈ 〈0, Hm〉 is the scheduled

parameter which is used to ensure I/O constraints, where Hm ∈ (0, 1). The control

law for the model predictive gain-scheduled controller design for a given prediction and

control horizon Nk is considered in the form

v(k) = F (θ(k)) yf (k) = F (θ(k))Cf a zf (k) (11.4)

where F (θ(k)) = F0 +
∑p−1

j=1 Fjθj(k)− F0θp(k).

Note 11.1. We can extend system (11.3) to PS or PSD control, for more information see

[18].

The procedure to ensure the input/output constraints is very simple. If the system input

or output approach the maximal or minimal value, using the scheduling parameter θp
one can affect the controller output. There are several solutions how to generate the

scheduling parameter θp, it is depending on the system. We will deal with this issue in

the examples. If we substitute control law (11.4) to system (11.3), a closed-loop system

is obtained

z(k + 1) = Ac(θ(k))z(k) (11.5)

where Ac(θ(k)) = Af a(θ(k)) +Bf a(θ(k))F (θ(k))Cf a.
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To assess the performance quality with possibility to obtain different performance quality

in each working point a quadratic cost function described in paper [18] will be used

Jdf (θ(k)) =

∞∑
k=0

zf (k)TQ(θ(k))zf (k) + v(k)TRv(k)

+ ∆zf (k)TS(θ(k))∆zf (k) =

∞∑
k=0

Jd(θ(k))

(11.6)

where ∆zf (k) = zf (k + 1) − zf (k), Q(θ(k)) = Q0 +
∑p

i=1Qiθi(k), S(θ(k)) = S0 +∑p
i=1 Siθi(k), Qi = QTi ≥ 0, Si = STi ≥ 0, R > 0 and Qp = Sp = 0.

Note 11.2. Using the cost function (11.6) we can affect the performance quality separ-

ately in each working point with defining different weighting matrices for each working

point which then are transformed to affine form and depend on the scheduled parameters

as system matrices. [18]

Definition 11.1. Consider system (11.3) with control algorithm (11.4). If a control law

v∗ and a positive scalar J∗d exist such that the closed-loop system (11.5) is stable and

the value of closed-loop cost function (11.6) satisfies Jd ≤ J∗d , then J∗d is said to be a

guaranteed cost and v∗ is said to be guaranteed cost control law for system (11.3).

Substituting the control law (11.4) to the quadratic cost function (11.6) one can obtain

Jd(θ(k)) = z̃T
[
Jd11(θ(k)) Jd12(θ(k))
Jd
T
12(θ(k)) Jd22(θ(k))

]
z̃ (11.7)

where z̃T =
[
zT (k + 1) zT (k)

]
and

Jd11(θ(k)) = S(θ(k)), Jd12(θ(k)) = −S(θ(k)),

Jd22(θ(k)) = Q(θ(k)) + Cf
T
a F (θ(k))TRF (θ(k))Cf a

+ S(θ(k))

To ensure the Affine Quadratic Stability (AQS) [21] the following Lyapunov function

has been chosen

V (θ(k)) = zTf (k)P (θ(k))zf (k) (11.8)

The first difference of Lyapunov function (11.8) is given as follows

∆V (θ(k)) = zTf (k + 1)P (θ(k + 1)) zf (k + 1)−
− zTf (k)P (θ(k)) zf (k)

(11.9)

where

P (θ(k)) = P0 +

p∑
i=1

Piθi(k) (11.10)
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On substituting θ(k+ 1) = θ(k) + ∆θ(k) to P (θ(k+ 1)) one obtains the following result

P (θ(k + 1)) = P0 +

p∑
i=1

Piθi(k) +

p∑
i=1

Pi∆θi(k) (11.11)

where if assuming that Pi > 0, ∆θi ∈ 〈∆θi,∆θi〉 ∈ Ωt, i = 0, 1, . . . p and max |∆θi| < ρi,

one can write

P (θ(k + 1)) ≤ P0 +

p∑
i=1

Piθi(k) + Pρ = Pρ(θ(k)) (11.12)

where Pρ =
∑p

i=1 Piρi. The first difference of the Lyapunov function (11.9) using the

free matrix weighting approach [17] is in the form

∆V (θ(k)) = z̃T
[
V11(θ(k)) V12(θ(k))
V T

12(θ(k)) V22(θ(k))

]
z̃ (11.13)

where
V11(θ(k)) =Pρ(θ(k)) +N1 +NT

1
V12(θ(k)) =NT

2 −N1Ac(θ(k))
V22(θ(k)) =−P (θ(k))−N2Ac(θ(k))−ATc (θ(k))NT

2

where N1, N2 ∈ Rn×n are auxiliary matrices.

Definition 11.2. [21] The linear closed-loop system (11.5) for θ(k) ∈ Ω and ∆θ(k) ∈ Ωt

is affinely quadratically stable if and only if p + 1 symmetric matrices P0, P1, . . . , Pp
exist such that P (θ(k)) (11.10), Pρ(θ(k)) (11.12) are positive defined and for the first

difference of the Lyapunov function (11.13) along the trajectory of closed-loop system

(11.5) it holds

∆V (θ(k)) < 0 (11.14)

From LQ theory we can introduce the well known results:

Lemma 11.1. Consider the closed-loop system (11.5). Closed-loop system (11.5) is

affinely quadratically stable with guaranteed cost if and only if the following inequality

holds

Be(θ(k)) = min
u
{∆V (θ(k)) + Jd(θ(k))} ≤ 0 (11.15)

for all θ(k) ∈ Ω. For proof see [22].

11.2.2 Case of infinite prediction horizon

The system described by (11.3) for the case of Nk = 0 can be transformed to the gain-

scheduled plant model

x(k + 1) = A(θ(k))x(k) +B(θ(k))u(k)

y(k) = C x(k)
(11.16)
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where A(θ(k)) = A0 +
∑p

i=1Aiθi(k), B(θ(k)) = B0 +
∑p

i=1Biθi(k), Ap = 0 and Bp = 0.

For the case Nk →∞ and S = 0 the cost function (11.6) can be rewritten as

J =

∞∑
k=0

J(k) =

∞∑
k=0

 ∞∑
j=0

xT (k + j)qjx(k + j)

+uT (k + j)rju(k + j)

)
=
∞∑
k=0

∞∑
j=0

J̃(k)

(11.17)

where qj ∈ Rn×n, rj ∈ Rm×m are positive definite matrices. The control law for the

model predictive gain-scheduled controller design for the infinite prediction horizon is

considered in the form

u(k) = F (θ(k)) y(k) = F (θ(k))C x(k) (11.18)

where F (θ(k)) = F0 +
∑p−1

j=1 Fjθj(k) − F0θp(k). To guarantee the stability and per-

formance of the closed-loop gain-scheduled system, due to Lemma 11.1 it is sufficient to

ensure

Be(θ(k)) = ∆V (x(k + j), θ(k)) + J̃(k) ≤ 0 (11.19)

where ∆V (x(k + j), θ(k)) = V (x(k + j + 1), θ(k) + ∆θ(k)) − V (x(k), θ(k)) is the first

difference of the Lyapunov function for j horizon prediction. Summing (11.19) from

j = 0 to j →∞, the upper bound on J(k) is obtained

J(k) ≤ V (x(k), θ(k)) (11.20)

On the basis of (11.20) the following gain-scheduled MPC design procedure is given

min
F (θ(k))

V (x(k), θ(k)) (11.21)

with constraints to system model (11.16), stability model and performance (11.19) and

other constraints. Assume that the Lyapunov function is in the form V (x(k), θ(k)) =

xT (k)P (θ(k))x(k), where P (θ) = P0 +
∑p

i=1 Piθi(k). Due to (11.21), the predicted

control design procedure can be modified as

min
F (θ(k))

xT (k)P (θ(k))x(k) ≤ xT (k)x(k)γ (11.22)

which leads to the inequality

P (θ(k)) ≤ min
F (θ(k))

γI (11.23)

In the paper [23] inequality (11.22) is in the form

min xT (k)P (θ(k))x(k) ≤ γ (11.24)

which needs to know the state vector x(k) and on-line optimization of (11.24) at every

sample time.
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The stability of the closed-loop system is guaranteed if

Be = ∆V (x(k), θ(k)) + αV (x(k), θ(k)) ≤ 0 (11.25)

where α ∈ 〈0, 1) is a coefficient with an influence on the closed-loop system performance.

If we substitute the Lyapunov function and its first difference to (11.25), we can obtain

Be(θ(k)) = x̃TW (θ(k)) x̃ ≤ 0 (11.26)

where x̃T =
[
xT (k + 1) xT (k)

]
, β = 1− α and

W (θ(k)) =

[
W11(θ(k)) W12(θ(k))
W12(θ(k))T W22(θ(k))

]
W11(θ(k)) =NT

1 +N1 + Pρ(θ(k))
W12(θ(k)) =−NT

1 Ac(θ(k)) +N2

W22(θ(k)) =−N2Ac(θ(k))−ATc (θ(k))N2 − P (θ(k))(β)

11.3 Main results

In this section the discrete predictive gain-scheduled controller design procedure is

presented which guarantees the affine quadratic stability and guaranteed cost for

θ(k) ∈ Ω with pre-defined maximal rate of change of the scheduled parameters ρ. The

main result of this section – the discrete model predictive gain-scheduled controller design

procedure – relies on the concept of multi-convexity, that is convexity along each dir-

ection θi(k), i = 1, 2, . . . , p of the parameter space. The implications of multiconvexity

for scalar quadratic functions are given in the next lemma [21].

Lemma 11.2. Consider a scalar quadratic function of α ∈ Rp.

f (α) = a0 +

p∑
i=1

aiαi +

p∑
i=1

p∑
j>i

bijαiαj +

p∑
i=1

ciα
2
i (11.27)

and assume that f (α1, . . . , αp) is multi-convex, that is ∂2f(α)
∂α2

i
= 2ci ≥ 0 for i =

1, 2, . . . , p. Then f(α) is negative for all α ∈ Ω and α̇ ∈ Ωt if and only if it takes

negative values at the corners of α.

11.3.1 Finite prediction horizon

Using Lemmas 11.1 and 11.2 the following theorem is obtained for discrete model pre-

dictive gain-scheduled controller design for finite horizon.

Theorem 11.1. Closed-loop system (11.5) is affinely quadratically stable if p+1 symmet-

ric matrices P0, P1, . . . , Pp exist such that P (θ(k)) (11.10), Pρ(θ(k)) (11.12) are positive

definite for all θ(k) ∈ Ω, with pre-defined ρi, matrices N1, N2, Qi, R, Si, i = 1, 2, . . . p
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and gain-scheduled matrices F (θ(k)) satisfying

M(θ(k)) < 0; θ(k) ∈ Ω

Mii ≥ 0; i = 1, 2, . . . , p
(11.28)

where (at sample time k)

M(θ) =M0 +
∑p

i=1Miθi +
∑p

i=1

∑p−1
j>i Mijθiθj +

∑p
i=1Miiθ

2
i

M0 =

[
M110 M120
M12

T
0 M220

]
, Mi =

[
M11i M12i
M12

T
i M22i

]
Mij =

[
M11ijM12ij

M12
T
ijM22ij

]
,M110 = P0 +N1 +NT

1 + S0 + Pρ

M11i =Pi, M11ij = 0, M11ii = 0
M120 =N2 −NT

1 (Af a0
+Bf a0

F0Cf a)− S0

M12i =−NT
1 (Af ai +Bf aiF0Cf a +Bf a0

FiCf a)− Si
M12ij =−NT

1 (Bf aiFj +Bf ajFi)Cf a
M12ii =−NT

1 Bf aiFiCf a
M220 =Q0 + S0 − P0 −NT

2 (Af a0
+Bf a0

F0Cf a)

−(Af a0
+Bf a0

F0Cf a)
TN2 + Cf

T
a F

T
0 RF0Cf a

M22i =−Pi −NT
2 (Af ai +Bf aiF0Cf a +Bf a0

FiCf a)

−(Af ai +Bf aiF0Cf a +Bf a0
FiCf a)

TN2

+Cf
T
a (F T0 RFi + F Ti RF0)Cf a +Qi + Si

M22ij =−NT
2 (Bf aiFj +Bf ajFi)Cf a − Cf

T
a (Bf aiFj

+Bf ajFi)
TN2 + Cf

T
a (F Ti RFj + F Tj RFi)Cf a

M22ii =−NT
2 Bf aiFiCf a − (Bf aiFiCf a)

TN2

+Cf
T
a F

T
i RFiCf a

Proof. The proof of the Theorem 11.1 is clear from the previous derivations. Here,

the proof is repeated only in basic steps. The proof is based on the Lemmas 11.1 and

11.2. When substituting the first difference of the Lyapunov function (11.13) and the

quadratic cost function (11.7) to the Bellman-Lyapunov function (11.15), after some

manipulation, using Lemma 11.2 we obtain (11.28) which proofs the Theorem 11.1.

11.3.2 Infinite prediction horizon

Using inequalities (11.23), (11.26) and Lemma 11.2 the following theorem is obtained

for discrete model predictive gain-scheduled controller design for infinite horizon.

Theorem 11.2. Closed-loop system is affinely quadratically stable if there exist p + 1

symmetric matrices P0, P1, . . . , Pp such that P (θ(k)) (11.10), Pρ(θ(k)) (11.12) are pos-

itive definite for all θ(k) ∈ Ω, with pre-defined ρi, matrices N1, N2, and gain-scheduled

matrices F (θ(k)) satisfying

W (θ(k)) < 0; θ(k) ∈ Ω

Wii ≥ 0; i = 1, 2, . . . , p

P (θ(k)) ≤ min
F (θ(k))

γ

(11.29)
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where (at sample time k)

W (θ) =W0 +
∑p

i=1Wiθi +
∑p

i=1

∑p−1
j>i Wijθiθj +

∑p
i=1Wiiθ

2
i

W0 =

[
W110 W120
W12

T
0 W220

]
, Wi =

[
W11i W12i
W12

T
i W22i

]
Wij =

[
W11ijW12ij

W12
T
ijW22ij

]
, W110 = P0 +N1 +NT

1 + Pρ

W11i =Pi, W11ij = 0, W11ii = 0
W120 =N2 −NT

1 (A0 +B0F0C)
W12i =−NT

1 (Ai +BiF0C +B0FiC),
W12ij =−NT

1 (BiFj +BjFi)C
W220 =−NT

2 (A0 +B0F0C)− (A0 +B0F0C)TN2 − P0β
W22i =−NT

2 (Ai +BiF0C +B0FiC)
−(Ai +BiF0C +B0FiC)TN2 − Piβ

W22ij =−NT
2 (BiFj +BjFi)C − CT (BiFj +BjFi)

TN2

W12ii =−NT
1 BiFiC, W22ii = −NT

2 BiFiC − (BiFiC)TN2

Proof. The proof of the Theorem 11.2 regarding to space limitations is sketched only

in basic steps. The proof is based on the Lemmas 11.1 and 11.2. If we substitute the

Lyapunov function and its first difference to (11.25), we can obtain (11.26), after some

manipulation, using Lemma 11.2 we obtain (11.29) which proofs the Theorem 11.2.

11.4 Examples

The first example will be a simple nonlinear system which has an unstable zero equilib-

rium point. The system is borrowed from [11]:

ẋ = −x|x|+ u −0.5 ≤ u ≤ 0.5
y = x −0.5 ≤ y ≤ 0.5 (11.30)

The system (11.30) is transformed into the following form

ẋ = −a(θ)x+ bu −0.5 ≤ u ≤ 0.5
y = cx −0.5 ≤ y ≤ 0.5 (11.31)

where a(θ) = a0 + a1θ, b = 1, c = 1 and θ = y|y|−a0y
a1y

∈ 〈−1, 1〉. The coefficients a0 and

a1 were calculated so as to maintain the scheduling parameter θ in the range 〈−1, 1〉

h = max
(
y|y|
y

)
; l = min

(
y|y|
y

)
; a0 = l+h

2 ; a1 = l−h
2

In our case for y ∈ 〈−0.5, 0.5〉 h = 0.5, l = 0 and it follows that a0 = 0.25 and

a1 = −0.25. If one substitutes the extreme points of θ ∈ 〈−1, 1〉 to the obtained LPV

system (11.31) one obtains 2 linear systems. These linear systems were transformed

to the discrete time-space with sample time Tst = 0.01 s and then extended for model

predictive controller design with control and prediction horizon Nk = 4 to obtain model

in the form (11.2). Then the obtained systems were transformed to the form (11.3) with

scheduling parameters θ1 ∈ 〈−1, 1〉 and θp = θ2 ∈ 〈0, Hm〉, Hm = 0.89. To achieve

the setpoint with zero control deviation we extend the system for PI model predictive

controller design.
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Using Theorem 11.1 with weighting matrices Q = qiI, q0 = 1 × 10−5, q1 = q2 = 0,

R = rI, r = 10, S = siI, s0 = 1× 10−50, s1 = s2 = 0 and ξU ≤ P (θ) ≤ ξL, ξU = 1× 104,

ξL = 1× 10−5, Tst = 0.01 s and ρ1 = ρ2 = 10 s−1 we obtained discrete model predictive

controller in the form (11.4) where

F0 =

−13.0132 1.7809 0.4441−0.4923−0.3557
0.6242−0.0185−0.4039 0.2242 0.1684
−0.9858 0.9487−0.6442 0.1888 0.0962
−2.0227 1.0136 0.6677−0.4935−0.1344

−0.0963 0.3846−0.2068
−0.1677−0.0675 0.0605

0.2371−0.5820 0.2699
0.0092 0.3362−0.1747


F1 =

 0.0001 0.0002−0.0009−0.0000−0.0002
−0.0075−0.0113 0.0467 0.0009 0.0079
−0.0032−0.0048 0.0197 0.0004 0.0033
−0.0027−0.0040 0.0165 0.0003 0.0028

−0.0005 0.0015−0.0007
0.0273−0.0770 0.0357
0.0115−0.0325 0.0151
0.0097−0.0272 0.0126


and F2 = −F0. To achieve the input constraints we use the following equation to

generate parameter θ2:

θ2 =

{
0 → if |u| < ls

|u|
(

−Hm

ls−us

)
+
(
Hm − us

(
−Hm

ls−us

))
→ if |u| ≥ ls

where us = 0.5 and ls = us − 0.001.

Simulation results (Figs. 11.1, 11.2 and 11.3) confirm that Theorem 11.1 holds and

system (11.30) is stable with considering the input constraints.

Figure 11.1: System output y(t) and the setpoint w(t)

The second example is a model of a synchronous generator described by equations as

follows

δ̈Tj + δ̇D = Pt − Pm sin(δ); ṖtTm + Pt = ku;Pe = Pm sin(δ)
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Figure 11.2: System input, u(t)

Figure 11.3: Calculated scheduling parameters, θ(t)

If we designate δ = x1, δ̇ = x2, Pt = x3, Pe = y and we select a working trajectory

(working points) δ = 30, 47.5, 60 we can obtain three linear models

ẋ1 = x2; ẋ2 = x1

(
−aiPm

Tj

)
+ x2

(
−D
Tj

)
+ x3

(
1
Tj

)
ẋ3 = x3

(
− 1
Tm

)
+ u

(
1
Tm

)
; y = x1 (aiPm)

where ai =
sin(δwpi)
δwpi

, i = 1, 2, 3 and δwp1 = 30, δwp1 = 47.5, δwp1 = 60, Pm = 1.1MVA,

Tj = 6.58/314 s2, Tm = 1.5 s, D = 0.01 s and k = 1 . These three models we transform to

discrete time-space with sample time Tst = 0.01 s. The obtained model was transformed

to the form (11.16) with scheduling parameters θ1, θ2 ∈ 〈−1, 1〉 and θp = θ3 ∈ 〈0, Hm〉,
Hm = 0.3. To achieve the setpoint with zero control deviation we extend the system

for PI model predictive controller design. Then using Theorem 11.2 with the coefficient

α = 0.25 and ξU ≤ P (θ) ≤ ξL, ξU = 1× 108, ξL = 1× 10−5 and ρ1 = ρ2 = ρ3 = 10 s−1

we obtained the discrete model predictive controller in the form (11.4) where

F0 =
[
−1.7123 −0.0150

]
, F1 =

[
−0.0202 −0.0002

]
F2 =

[
−0.0185 −0.0001

]
, F3 = −F0

Simulation results are shown in Figs. 11.4, 11.5 and 11.6.
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Figure 11.4: Simulation results, y(t), w(t)

Figure 11.5: System input, u(t)

Figure 11.6: Calculated scheduling parameters, θ(t)

11.5 Conclusion

In this paper a novel gain scheduling based MPC design procedure is presented for

nonlinear systems with I/O constraints for finite and infinite prediction horizons. The

design procedure is in the form of BMI (we can use a free and open source BMI solver).

Numerical examples show the benefits for the finite and infinite prediction horizon. The

presented theory opens new possibilities for further research and study in this area.
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12

Unified Robust Gain-Scheduled

and Switched Controller Design

for Linear Continuous-Time Systems

(Paper 9)

Abstract

In this paper we study the problem how to obtain a new unified procedure to design a

robust gain-scheduled and switched controller for continuous-time systems described by

a novel robust plant model using the parameter dependent quadratic stability (PDQS)

approach. In the proposed design procedure with output feedback a novel quadratic

cost function is proposed which allows to obtain different performance dependence on

the working points. Finally a numerical example is investigated.

Keywords: Gain-scheduled controller, switched system, robust controller, output feed-

back, parameter dependent quadratic stability.

12.1 Introduction

The topic of robust hybrid systems has attracted considerable attention in the past

decades. Wherever continuous and discrete dynamics interact, a hybrid system arises.

The main motivation for studying hybrid systems comes from the two facts:

• hybrid systems have numerous applications in the real world, and

• in real control, there are dynamical systems that cannot be stabilized by any

continuous static (dynamic) output state controller but a stabilizing hybrid control

scheme can be found.
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There are several approaches to model hybrid systems [1], [2]. In the references they

consider a discrete even system and continuous dynamics modeled by differential or

difference equations. Such models are used to formulate general stability conditions

for hybrid systems. In this paper, we consider the class of hybrid systems known as

switched systems [3]. There are at last two approaches for stability analysis and control-

ler synthesis of switched systems. The quadratic stability approach with the common

Lyapunov function gives stability of closed-loop switched systems under an arbitrary

switching law and a multiple Lyapunov function which is less conservative. The survey

of the present status of switched systems can be consulted in the excellent paper and

work of [4], [1] and [5]. A huge number of references can be found in the switched con-

trol of linear discrete-time invariant systems but in the field of linear continuous-time

invariant systems the number of references is rather small. The representatives are the

following references [6], [7], [8], [9], [10].

In real applications a controller must accommodate a plant with changing dynamics.

Therefore, controllers based on these models have to be robust in the presence of plant

model uncertainty. In a practical situation one could use the gain scheduling approach

which involves scheduling in a family of local controllers in response to the changing

plant dynamics. The proposed family of local controllers is implemented using the gain

scheduling approach. The classical gain scheduling design procedure typically involves

the following steps [11]

• The equilibrium operating points are parameterized by an appropriate quantity

θT = [θ1, . . . , θp] which may be involve to the plant input and output.

• The plant dynamics is approximated, locally to a specific equilibrium operating

point at which one obtains different values of θ.

• For a given controller structure with a value of θ a linear time-invariant controller

is designed. It should be noted that θ is assumed to be constant when designing

this controller.

• Repeat steps 2 and 3 for a family of operating points. Family of controllers are

parameterized by θ.

A survey of gain-scheduled controller design can be found in [11], [12] and [13] using

linear controller design techniques. In our paper, using a new uncertain plant model, a

unified approach to design a robust gain-scheduled and robust switched controller with

an arbitrarily switching law [1] is developed for continuous-time linear systems. Using

multiple parameter dependent Lyapunov function the novel robust gain-scheduled and

switched controller design procedure is obtained in the form of BMI. In the proposed

design procedure there is no need to use the approach of ”dwell time” [6], [7] for switched

controller design with arbitrary switching. The ”dwell time” markedly complicates the

robust switched controller design procedure and makes the obtained results conservative.

The advantages of the proposed method are as follows:

164



12.2. Problem formulation and preliminaries

• a unified approach to robust gain-scheduled and robust switched controller design

with arbitrary switching for linear continuous-time system has been developed,

• in the method proposed in the paper for the case of switched controller design with

arbitrary switching there is no need to use the approach of ”dwell-time”,

• the switched controller designer can take into account the non-ideal switching, that

is switching a variable with a rate of switching less than infinite, which open the

new possibility for the controller designer,

• different performance could be prescribed by the proposed new cost function for

all plant modes.

Organization of the paper is following. Section 12.2 includes problem formulation of the

robust gain-scheduled or switched controller design and some preliminaries are given.

In Section 12.3 sufficient stability conditions to design the robust gain-scheduled or

switched controller in the form of BMI are given. In Section 12.4 the obtained results

are illustrated on real examples.

12.2 Problem formulation and preliminaries

The class of LPV uncertain continuous-time systems considered in the paper can be

represented by the following model

ẋ(t) = A(ξ, θ)x(t) +B(ξ, θ)u(t)
y(t) = Cx(t)

(12.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control vector, y(t) ∈ Rl is the

output vector of the system to be controlled. Time varying scheduling parameter vector

θT = [θ1, . . . , θp] is assumed to belong to a hyper rectangle:

• Gain-Scheduled Controller

θi ∈ 〈θi, θi〉, i = 1, 2, . . . , p, θi = −θi, θ̇i ∈ 〈θ̇i, θ̇i〉 (12.2)

• Switched Controller Design

θi ∈ 〈0, 1〉, i = 1, 2, . . . , p,

p∑
i=1

θi = 1,

p∑
i=1

θ̇i = 0 (12.3)

θ̇i ∈ 〈θ̇i, θ̇i〉

where θi, i = 1, 2, . . . , p is a switching variable with an arbitrary switching al-

gorithm and p is the number of switching plant modes. Observation of (12.1)

implies that for an arbitrary switching algorithm the number of active switching

plant modes generates the value of switching variable θi, i = 1, 2, . . . , p to determ-

ine which controller will be active.
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• Assume that for both cases hold θ ∈ Ω, θ̇ ∈ Ωt

There are two possibilities for switching parameters θi, i = 1, 2, . . . , p

1. the rates of change of the switching parameters are infinite, ideal switching case,

in this case the quadratic stability with respect to parameter θ can be used or

2. the rates of change of switching parameters θi are finite, non-ideal case, in this

case the PDQS is recommended to use.

Affine dependence on the scheduling (switching) parameter vector is assumed as follows

A(ξ, θ) = A0(ξ) +

p∑
i=1

Ai(ξ)θi ∈ Rn×n

B(ξ, θ) = B0(ξ) +

p∑
i=1

Bi(ξ)θi ∈ Rn×m
(12.4)

where Ai(ξ), Bi(ξ), i = 0, 1, . . . , p belong to a convex polytope box with N vertices that

can be formally defined as

Ω =

{
Ai(ξ), Bi(ξ) =

N∑
j=1

(Aij , Bij)ξj , i = 0, 1, . . . , p,

N∑
j=1

ξj = 1, ξj ≥ 0, ξj ∈ Ωξ

} (12.5)

Assume that the entries of vector ξ are unknown but constant. The following Gain-

Scheduled (Switched with an arbitrary switching algorithm) dynamic output feedback

controller is considered:

ẋc = Ac(θ)xc +Bc(θ)y(t)

u = Ccxc +Dcy(t)
(12.6)

or

u = [DcC Cc][x xc]
T = Fc[x xc]

T

where xc ∈ Rnc , nc = n represents the controller state vector. Matrices Ac(θ), Bc(θ) are

supposed to have the following structure

Ac(θ) = Ac0 +

p∑
i=1

Aciθi

Bc(θ) = Bc0 +

p∑
i=1

Bciθi

(12.7)

Closed-loop system of (12.1) and (12.6) can be written as

ż =

[
A(ξ, θ) +B(ξ, θ)DcC B(ξ, θ)Cc
Bc(θ)C Ac(θ)

]
z = Acl(θ, ξ)z (12.8)
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where zT = [xT xTc ]. Closed-loop system (12.8) is affine to both the uncertain vector

parameter ξ and scheduling (switching) vector parameter θ. Let the following cost

function be associated with the closed-loop system

J =

∫ ∞
0

(
zTQ(θ)z + uTRu

)
dt =

∫ ∞
0

J(t)dt (12.9)

where Q(θ) ∈ Rz×z is positive definite (semidefinite) matrix with structure Q(θ) =

Q0 +
∑p

i=1Qiθi and R ∈ Rm×m > 0.

Definition 12.1. Consider system (12.1) and controller (12.6). If there exists a control

law u∗ and a positive scalar J∗ such that the respective closed-loop system (12.8) is

stable and the value of the closed-loop cost function (12.9) satisfies Jc ≤ J∗, then J∗ is

said to be the guaranteed cost and u∗ is said to be the guaranteed cost control law for

system (12.8).

Lemma 12.1. [14][15] Consider system (12.1) with control algorithm (12.6). Control

algorithm (12.6) is the guaranteed cost control law for the closed-loop system (12.8) if

and only if there exists a Lyapunov function V (z, θ, ξ) such that the following condition

holds

Be(z, θ, ξ) = min
u

{
dV (z, θ, ξ)

dt
+ J(t)

}
≤ −εzT z ε→ 0 (12.10)

for all θ ∈ Ω, θ̇ ∈ Ωt.

Uncertain system (12.1) with control algorithm (12.4) conforming to Lemma 12.1 is

called to be robust stable with guaranteed cost. Note that for a concrete structure of

V (z, θ, ξ) ”if and only if” may to be decreased to ”if”.

12.3 Robust gain-scheduled and switched controller design

In this Section the unified robust gain-scheduled and switched controller design proced-

ure is presented. In the references on the switched controller design the authors refer

to the case where switching can occur immediately. In real world there are many cases,

where the switching signal rate of change is finite, that is |θ̇| <∞. This assumption will

be used in the proposed approach.

To separate the system matrix Acl(.) from the time derivative of the Lyapunov function

V (z, θ, ξ) let us introduce the following two auxiliary matrices N1, N2 ∈ R(n+nc)×(n+nc)

as follows

(2N1ż + 2N2z)
T (ż −Acl(θ, ξ)z) = 0

or after small manipulation[
żT

zT

]T [
N1 +NT

1 −NT
1 Acl(θ, ξ) +N2

• −NT
2 Acl(θ, ξ)−Acl(θ, ξ)TN2

] [
ż
z

]
= 0 (12.11)
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Assume that the positive definite Lyapunov function in (12.10) is in the form

V (z, θ, ξ) = zTP (ξ, θ)z

The time derivative of the Lyapunov function is

V̇ (.) = żTP (ξ, θ)z + zTP (ξ, θ)ż + zTP (ξ, θ̇)z

or

V̇ (.) =
[
żT zT

] [ 0 P (ξ, θ)

P (ξ, θ) P (ξ, θ̇)

] [
ż
z

]
(12.12)

where

P (ξ, θ) = P0(ξ) +

p∑
i=1

Pi(ξ)θi, Pi(ξ) =
N∑
j=1

Pijξj

P (ξ, θ̇) =
N∑
j=1

p∑
i=1

Pij θ̇iξj , j = 1, 2, . . . , N

Using(12.6) for performance (12.9) one obtains

J(t) =
[
żT zT

] [ 0 0
0 Q(θ) + F Tc RFc

] [
ż
z

]
(12.13)

Summing up (12.11), (12.12) and (12.13) and substitute the obtained result to (12.10),

after small manipulations one obtains the robust stability condition for the gain-

scheduled and switched controller design in the form

Be =
[
żT zT

]
L(θ, ξ)

[
ż
z

]
< 0 (12.14)

where

L(θ, ξ) =

[
l11(θ, ξ) l12(θ, ξ)
l12(θ, ξ)T l22(θ, ξ))

]
(12.15)

and

l11(θ, ξ) = NT
1 +N1

l12(θ, ξ) = −NT
1 Acl(θ, ξ) +N2 + P (ξ, θ)

l22(θ, ξ) = Q(θ) + F Tc RFc + P (ξ, θ̇)−NT
2 A

T
cl(θ, ξ)−Acl(θ, ξ)TN2

L(θ, ξ) in (12.15) be affine with respect to vector variables θ and ξ. If L(θ, ξ) ≤ 0, the

closed-loop system with the proposed robust gain-scheduled or switched controller is

parameter dependent quadratically stable with guaranteed cost.

L(θ, ξ) can be rewritten as

L(θ, ξ) = L0(ξ) +

p∑
i=1

Li(ξ)θi (12.16)
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where

L0(ξ) =

[
l011(θ, ξ) l012(θ, ξ)
l12(θ, ξ)T l022(θ, ξ))

]
l011(ξ) = NT

1 +N1

l012(ξ) = −NT
1 A0cl(ξ) +N2 + P0(ξ)

l022(ξ) = Q0 + F Tc RFc + P (ξ, θ̇)−NT
2 A

T
0cl(ξ)−A0cl(ξ)

TN2

A0cl(ξ) =

[
A0(ξ) +DcC B0(ξ)Cc

Bc0C Ac0

]
Li(ξ) =

[
0 −NT

1 Aicl(ξ) + Pi(ξ)
∗ −NT

2 Aicl(ξ)−Aicl(ξ)TN2 +Qi

]
Aicl(ξ) =

[
Ai(ξ) +DcC Bi(ξ)Cc

BciC Aci

]
Due to linearity L(θ, ξ) can be transformed to the form

L(θ, ξ) =

N∑
j=1

(L0j +

p∑
i=1

Lijθi)ξj =

N∑
j=1

Mj(θ)ξj (12.17)

where

L0j =

[
NT

1 +N1 −NT
1 A0clj +N2 + P0j

∗ Pe0 +
∑p

i=1 Pij θ̇i −NT
2 A0clj −AT0cljN2

]
Pe0 = Q0 + F Tc RFc

A0clj =

[
A0j +B0jDcC B0jCc

Bc0C Ac0

]
Lij =

[
0 −NT

1 Aiclj + Pij
∗ Qi −NT

2 Aiclj −ATicljN2

]
Aiclj =

[
Aij +BijDcC BijCc

BciC Aci

]

Mj(θ) = L0j +

p∑
i=1

Lijθi, j = 1, 2, . . . , N (12.18)

Since (12.16) and (12.17) are convex with respect to parameters θ and ξ, the above

inequalities split to N inequalities of (12.18). The obtained sufficient robust stability

conditions are summarized in the following theorem.

Theorem 12.1. LPV uncertain continuous-time system (12.1) with Gain-Scheduled

or Switched (with arbitrarily switching algorithm) dynamic output feedback controller

(12.6) is parameter dependent quadratically stable with guaranteed cost (12.9) if there

exist matrices N1, N2 and control algorithm (12.6) such that the following inequality

hold

Mj(θ) < 0, j = 1, 2, . . . , N (12.19)

that is if in all vertices of j = 1, 2, . . . , N and i = 1, 2, . . . , p Mj(θ) has a negative value.
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Notes:

• For the case of ideal switching the rate of the switching algorithm is infinite (θ̇i →
∞(−∞)). For this case in (12.12) the matrix Pi(ξ) = 0.

• For the case of non-ideal switching algorithm |θ̇i| < ∞ the switching controller

design procedure and the gain-scheduled controller design procedure are the same.

• For the case of quadratic stability approach with respect to uncertainty in (12.12)

one puts P (ξ, θ) = P0 +
∑p

i=1 Piθi.

12.4 Examples

12.4.1 Prescribed controller structure

Assume that instead of controller (12.7) one wants to use the standard PID or PI gain-

scheduled or switched controller with transfer function

R(s) =
bnc−1s

nc−1 + . . . b0
snc + anc−1snc−1 + . . . a0

In this case the structure of matrices Aci, Bci, Cc, Dc = 0, i = 0, 1, . . . , p needs to be

prescribed. For SISO case the controller prescribed matrices are in the form

Aci =

 0 0 . . . 0 −a0

1 0 . . . 0 −a1

.. .. .. .. ..
0 0 . . . 1 −an−1

 ;Bci =

 b0
b1
..

bn−1

 , i = 0, 1, . . . , p (12.20)

Cc = [0 . . . 0 1]

For PID controller with filter one obtains

R(s) =
kp

Tfs+ 1

(
1 +

1

Tis
+

Tds

Td/Ncs+ 1

)
(12.21)

a0 = 0; a1 =
Nc

TfTd
; a2 =

NcTf + Td
TdTf

b0 =
Nckp
TiTdTf

; b1 =
NcTi + Td
TiTdTf

kp; b2 =
Nc + 1

TdTf
kp

If one chooses Tf and Nc, the other controller parameters from (12.21) are calculated

straightforward. For PI controller with transfer function

R(s) =
kp

Tfs+ 1

(
1 +

1

Tis

)
(12.22)

the matrices in (12.20) are

a1 =
1

Tf
; b0 =

kp
TiTf

; b1 =
kp
Tf
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When a0 = 0, a1, b0, b1 are known, one obtains simple equations for PI controller

parameter calculation

Tf =
1

a1
; kp = b1Tf ; Ti =

kp
b0Tf

(12.23)

12.4.2 Different quadratic stability approach

In the proposed example, the results obtained using parameter dependent quadratic

stability are compared with the results for different quadratic stability variants. The

following 4 variants of the Lyapunov function are used in the design procedure to study

the differences between the qualities of the designed controllers.

• DP1 : Quadratic stability with respect to uncertain model parameter variation.

For this case, the Lyapunov matrix is dependent only on θ and it is in the form

P (θ) = P0 +

s∑
i=1

Piθi (12.24)

• DP2 : Parameter dependent quadratic stability. The Lyapunov matrix depends on

both ξ and θ and is given as

P (ξ, θ) = P0(ξ) +
s∑
i=1

Pi(ξ)θi (12.25)

where

Pj(ξ) =
N∑
i=1

Pjiξi, j = 0, 1, 2, . . . , s,
N∑
i=1

ξi = 1

• DP3 : Quadratic stability with respect to gain-scheduled parameters. For this case

the Lyapunov matrix is dependent only on ξ

P (ξ) =
N∑
i=1

Piξi (12.26)

• DP4 : Quadratic stability with respect to both gain-scheduled and uncertain para-

meters. The Lyapunov matrix is P0, independent of ξ and θ.

12.4.3 Robust controller design

The uncertain gain-scheduled plant model (12.1) for the case of p = 1, N = 4 is given

as follows:

A01 =

−0.5 0.2 0.3
.2 −0.78 1

0.05 −0.02−.1

 , A02 =

−0.3 0.15 0.25
.25 −0.5 .7
0.05 0.01 −.15
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A03 =

−0.6 0.15 0.15
.4 −0.8 .75

0.01 0.06 −.5

 , A04 =

−0.35 0.25 0.17
.18 −0.22 .23
0.02 −0.043 −.3


A11 =

−0.65 0.15 15
.4 −0.8 0.75

0.015 0.06 −.5

 , A12 =

−0.38 0.215 0.25
.25 −0.5 .77
0.05 0.01 −.15


A13 =

−0.33 0.15 0.25
.25 −0.51 .705

0.105 0.15 −.21

 , A14 =

−0.35 0.25 0.17
.18 −0.22 .23
0.02 −0.043 −.3


B01 =

 .01
0.5
0.08

 , B02 =

 .03
3

0.23


B03 =

 .015
.55
0.08

 , B04 =

 .01
.52

0.088


B11 =

 .015
0.52
0.088

 , B12 =

 .015
1

0.2


B13 =

 .01
2

0.3

 , B14 =

 .02
1.5
0.3


C =

[
1 0 1

]
The problem is to design to the linear uncertain system (12.1) robust gain-scheduled

controller given by (12.6) which will ensure the closed-loop stability (12.8), guaranteed

cost and parameter dependent quadratic stability for the case of the following paramet-

ers:

• the gain-scheduled parameters θ1 ∈ 〈−0.15, 0.15〉, p = 1, θ̇1 ∈ 〈−5, 5〉, for the

Lyapunov matrix 0 < P (ξ, θ) = P0(ξ)+
∑p

i=1 Pi(ξ)θi < roI, ro = 1000 holds. The

parameters of performance (12.9) are as follows: Q0 = 0.02∗I, Q1 = 0.002∗I, R =

I.

• the gain-scheduled parameters θ1 ∈ 〈0, 1〉, p = 1, θ̇i ∈ 〈−100, 100〉. Performance

specification Q0 = 0.02∗I, Q1 = 0.002∗I, R = I and Lyapunov matrix limitation

: 0 < P (ξ, θ) = P0(ξ) +
∑p

i=1 Pi(ξ)θi < roI, ro = 1000. Due to the value of θ̇i for

the second case the obtained gain-scheduled controller can work in the regime of

switched controller with arbitrary switching.

• Note that for the design of the switched controller p ≥ 2.

• To obtain a feasible solution in the unified gain-scheduled and switched controller

design procedure one can use a free and open source of BMI solver Penlab.

The first case of robust gain-scheduled controller design

For the case of a prescribed gain-scheduled dynamic output feedback controller struc-

ture and the above different quadratic stability approaches the obtained robust gain-

scheduled controller parameters are given below as follows:
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1. Case DP1: prescribed gain-scheduled dynamic output feedback controller structure

AC0 =

[
0 0 0
1 0−2.2189
0 1−1.7354

]
BC0 =

[−0.0528
−1.2598
−1.8443

]

AC1 =

[
0 0 0
1 0 −1.856
0 1−1.8287

]
BC1 =

[ −0.117
−1.5733
−1.9692

]
CC = [0 0 1] DC = [0]

In the polytope vertices closed loop system the maximal eigenvalue value for the

case of θ1 = 0 is Maxeig = −0.0126.

2. Case DP2: prescribed gain-scheduled dynamic output feedback controller structure

AC0 =

[
0 0 0
1 0−1.7120
0 1 −1.499

]
BC0 =

[−0.1004
−1.2506
−1.1308

]

AC1 =

[
0 0 0
1 0−1.5976
0 1−1.6212

]
BC1 =

[−0.1955
−1.0696
−1.1819

]
CC = [0 0 1] DC = [0]

In the polytope vertices closed loop system the maximal eigenvalue value for the

case of θ1 = 0 is Maxeig = −0.0304.

3. Case DP3: gain-scheduled dynamic output feedback controller, general structure

AC0 =

[−6.1307 0 0
0 −6.1307 0
0 0 −6.4417

]
BC0 =

[
0
0
1

]

AC1 =

[
0 0 0
0 0 0
0 0 0.0530

]
BC1 =

[
0
0

−0.644

]
CC = [0 0 1] DC = [−0.6676]

In the polytope vertices closed loop system the maximal eigenvalue value for the

case of θ1 = 0 is Maxeig = −0.1486.

4. Case DP4: gain-scheduled dynamic output feedback controller, general structure

AC0 =

[−5.6621 0 0
0 −5.6621 0
0 0 −31527

]
BC0 =

[
0
0
1

]

AC1 =

[
0 0 0
0 0 0
0 0−0.8794

]
BC1 =

[
0
0

0.2589

]
CC = [0 0 1] DC = [−0.6471]

In the polytope vertices closed loop system the maximal eigenvalue value for the

case of θ1 = 0 is Maxeig = −0.1165.

The second case of robust gain-scheduled-switched controller design

For the case of different prescribed gain-scheduled-switched dynamic output feedback

controller structure and the above different quadratic stability approaches the obtained

robust gain-scheduled controller parameters are given below as follows:
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1. Case DP1: prescribed gain-scheduled-switched controller structure

AC0 =

[
0 0 0
1 0 −23202
0 1−1.3286

]
BC0 =

[−0.0916
−1.3158
−10984

]

AC1 =

[
0 0 0
1 0−1.83232
0 1 −2.0471

]
BC1 =

[−0.1782
−1.2271
−1.5157

]
CC = [0 0 1] DC = [0]

In the polytope vertices closed loop system the maximal eigenvalue value for the

case of θ1 = 0 is Maxeig = −0.0215.

2. Case DP2: prescribed gain-scheduled-switched controller structure

AC0 =

[
0 0 0
1 0−1.9749
0 1 −11883

]
BC0 =

[−0.1086
−1.1485
−0.7984

]

AC1 =

[
0 0 0
1 0−1.7053
0 1−1.5816

]
BC1 =

[−0.1592
−0.8254
−0.9119

]
CC = [0 0 1] DC = [0]

In the polytope vertices closed loop system the maximal eigenvalue value for the

case of θ1 = 0 is Maxeig = −0.0307.

3. Case DP3: gain-scheduled-switched dynamic output feedback controller

AC0 =

[−6.4835 0 0
0 −6.4835 0
0 0 −6.1245

]
BC0 =

[
0
0
1

]

AC1 =

[−0.3309 0 0
0 −0.3309 0
0 0 −1.3723

]
BC1 =

[
0
0

0.0509

]
CC = [0 0 1] DC = [−0.5283]

In the polytope vertices closed loop system the maximal eigenvalue value for the

case of θ1 = 0 is Maxeig = −0.1240.

4. Case DP4: gain-scheduled-switched dynamic output feedback controller

AC0 =

[−8.1281 0 0
0 −8.1281 0
0 0 −8.2784

]
BC0 =

[
0
0
1

]

AC1 =

[−0.0411 0 0
0 −0.0411 0
0 0 −1.0924

]
BC1 =

[
0
0

0.1070

]
CC = [0 0 1] DC = [−0.4338]

In the polytope vertices closed loop system the maximal eigenvalue value for the

case of θ1 = 0 is Maxeig = −0.1153.

Simulation results (Figs. 12.1, 12.2, 12.3, 12.4) confirm, that Theorem holds. Simulation

results for the first case (robust gain-scheduled controller design) are shown in Figs.

12.1 and 12.2, where the scheduled parameter is calculated from the system output.

Simulation results for the second case (robust gain-scheduled-switched controller design)
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Figure 12.1: Simulation results y(t), w(t) for the first case of robust gain-scheduled
controllers

Figure 12.2: Calculated scheduled parameters θDP1−4(t) for the first case of robust
gain-scheduled controllers

Figure 12.3: Simulation results y(t), w(t) for the second case of robust gain-scheduled
controllers

Figure 12.4: Scheduled parameter θ1(t) for the second case of robust gain-scheduled
controllers
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are shown in Figs. 12.3 and 12.4. The scheduled parameters from a randomly generated

switching algorithm are shown in Fig. 12.4, where the maximal rate of change is θ̇ = 100

1/s.

12.5 Conclusion

The proposed paper addresses the problem how to obtain the new unified procedure

to design a robust gain-scheduled and switched controller with arbitrary switching for

continuous-time systems described by a novel robust plant model using the parameter

dependent quadratic stability (PDQS) approach. The obtained unified controller design

procedure ensures the closed-loop stability and guaranteed cost for a prescribed rate of

change of the system switching (gain-scheduled) variable. In some real cases the rate of

change of the switching signal is finite. This assumption was used in the paper to obtain

the switched controller design procedure. The advantages of the proposed method are:

• one can obtain less conservative results in comparison with using the dwell-time

approach,

• for the switched controller design there is no need to use the approach of ”dwell-

time” markedly complicating the design procedure,

• the rate of the switching signal (scheduled variables) change can be prescribed

by the designer, which opens the new possibilities for practical realizations and

development of new theoretical approaches,

• the obtained design procedure for output/state feedback ensures the closed loop

robust stability of gain-scheduled or switched systems and guaranteed cost,

• the obtained design procedure can be implemented easily to the standard LMI or

BMI approaches.

Numerical examples illustrate the effectiveness of the proposed approach.
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13

Concluding remarks

13.1 Brief overview

This thesis deals with controller design for nonlinear systems. The controller is given in

a feedback structure that is, the controller has information about the system and uses

it to influence the system. The nonlinear system is transformed to a linear parameter-

varying system which is used for controller design, i.e. gain-scheduled controller design.

The gain-scheduled controller synthesis presented in this thesis is based on the Lyapunov

theory of stability as well as on the Bellman-Lyapunov function. To achieve a perform-

ance quality, a quadratic cost function and its modifications known from LQ theory are

used. The obtained gain-scheduled controller guarantees the closed-loop stability and

the guaranteed cost. The main results for controller synthesis are in the form of bilin-

ear matrix inequalities and/or linear matrix inequalities. For controller synthesis, one

can use a free and open source BMI solver PenLab or LMI solvers LMILab, SDPT3 or

SeDuMi.

13.2 Closing remarks and future works

The main goal for this thesis (and also to our research in last 2,5 – 3 years) was to find a

systematic controller design approach for uncertain nonlinear systems, which guarantees

the closed-loop stability and guaranteed cost with considering input/output constraints,

all this without on-line optimization and need of high-performance industrial computers.

We tried to select those publications which most closely reflect the achieved results. The

first included paper (Chapter 4) presents a simple gain-scheduled controller design for

nonlinear systems which guarantees the closed-loop stability and guaranteed cost. One

can include the maximal value of the rate of gain-scheduled parameter changes which

allows obtaining the controller with a given performance and decreased conservative-

ness. In the next chapter (Chapter 5), one can find a simple modification of these

results, where a new quadratic cost function is used, where weighting matrices are time-

varying and depending on scheduled parameter. Using these original variable weighting
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matrices, we can affect performance quality separately in each working point and we can

tune the system to the desired condition through all parameter changes. Chapters 6, 7

present the robust versions of the obtained results from Chapters 4, 5, where in Chapter

6 the design procedure is transformed from the bilinear matrix inequality form to lin-

ear matrix inequality, which caused that our controller synthesis works for high order

systems. In Chapter 8, a simplified version of the robust controller design in discrete

time domain is presented, where a new LPV description of T1DM Bergman’s minimal

model with two additional subsystems (absorption of digested carbohydrates and sub-

cutaneous insulin absorption) is created. The controller synthesis in this paper is also

transformed to LMI problem. In Chapters 9 and 10, gain-scheduled controller designs

adopted to switched control are presented in continuous time. In the proposed design

procedures there is no need to use the notion of the ”dwell-time” for arbitrary switching,

which significantly simplifies the switched controller design compared to approaches in

the literatures. In Chapter 11, a novel gain scheduling based model predictive control-

ler design procedure for nonlinear systems is presented for finite and infinite prediction

horizons with considering input/output constraints. Finally, a novel unified robust gain-

scheduled and switched controller design approach is presented in Chapter 12, where the

conservativeness from multi-convexity is eliminated.

The stated objectives (in Chapter 1) were reached successfully but there are still many

unsolved problems. For example, in this thesis it is hypothesized that the scheduled

parameters can be measured and the measurement is accurate. It is true that if one

uses the robust version, then the measurement inaccuracy can be covered as model

uncertainty but this should be studied in more detail. Furthermore, it would be good

to study how information from disturbances can be used to improve the performance

quality under disturbances. Moreover, it would be an interesting study how to reduce

the time required to controller synthesis because it is well known that the time required

for controller design using LMI and especially BMI solvers rapidly increases for higher

order systems. It follows that this thesis opens new possibilities for further studies and

research in this specific area.
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18-21, 2013, p. 439-444. ISBN 978-80-227-3951-1.

182



Appendix A. List of publications
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